Boundary-Layer Meteorology

, Volume 99, Issue 2, pp 297–316 | Cite as

Simulation Of Blowing Snow In The Canadian Arctic Using A Double-Moment Model

  • Stephen J. Déry
  • M. K. Yau


We describe in this paper the development of a double-moment modelof blowing snow and its application to the Canadian Arctic. Wefirst outline the formulation of the numerical model, whichsolves a prognostic equation for both the blowing snow mixingratio and total particle numbers, both moments of particles thatare gamma-distributed. Under idealized simulations, the modelyields realistic evolutions of the blowing snow particledistributions, transport and sublimation rates as well as the thermodynamic fields at low computational costs. A parametrizationof the blowing snow sublimation rate is subsequently derived. The model and parametrization are then applied to a Canadian Arctictundra site prone to frequent blowing snow events. Over a period of210 days during the winter of 1996/1997, the near-surfacerelative humidity consistently approaches saturationwith respect to ice. These conditions limit snowpack erosion byblowing snow sublimation to ≈3 mm snow water equivalent (swe)with surface sublimation removing an additional 7 mm swe.We find that our results are highly sensitiveto the proper assimilation of the humidity measurements and the evolving thermodynamic fields in the atmospheric boundary layer during blowingsnow. These factors may explain the lower values of blowing snow sublimationreported in this paper than previously published for the region.

Arctic Blizzard Blowing snow Double-moment Mackenzie Basin Sublimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. S.: 1994, ‘A Method for Rescaling Humidity Sensors at Temperatures Well Below Freezing’ J. Atmos. Oceanic Tech. 11, 1388-1391.Google Scholar
  2. Benoit, R.,Desgagné, M.,Pellerin, P.,Pellerin, S.,Chartier, Y., andDesjardins, S.: 1997, ‘The Canadian MC2: A Semi-Lagrangian, Semi-Implicit Wideband Atmospheric Model Suited for Finescale Process Studies and Simulation’ Mon. Wea. Rev. 125, 2382-2415.Google Scholar
  3. Bintanja, R.: 1998, ‘The Contribution of Snowdrift Sublimation to the Surface Mass Balance of Antarctica’ Ann. Glaciol. 27, 251-259.Google Scholar
  4. Budd, W. F.: 1966, ‘The Drifting of Non-Uniform Snow Particles’ in M. J. Rubin (ed.), Studies in Antarctic Meteorology, Antarctic Research Series, Vol. 9, American Geophysical Union, Washington, DC, pp. 59-70.Google Scholar
  5. Déry, S. J. andTaylor, P. A.: 1996, ‘Some Aspects of the Interaction of Blowing Snow with the Atmospheric Boundary Layer’ Hydrol. Proc. 10, 1345-1358.Google Scholar
  6. Déry, S. J. andYau, M. K.: 1999a, ‘A Climatology of Adverse Winter-Type Weather Events’ J. Geophys. Res. 104(D14), 15,657-16,672.Google Scholar
  7. Déry, S. J. andYau, M. K.: 1999b, ‘A Bulk Blowing Snow Model’ Boundary-Layer Meteorol. 93, 237-251.Google Scholar
  8. Déry, S. J.,Taylor, P. A., andXiao, J.: 1998, ‘The Thermodynamic Effects of Sublimating, Blowing Snow in the Atmospheric Boundary Layer’ Boundary-Layer Meteorol. 89, 251-283.Google Scholar
  9. Essery, R.,Li, L., andPomeroy, J. W.: 1999, ‘A Distributed Model of Blowing Snow over Complex Terrain’ Hydrol. Proc. 13, 2423-2438.Google Scholar
  10. Harrington, J. Y.,Meyers, M. P.,Walko, R. L., andCotton, W. R.: 1995, ‘Parameterization of Ice Crystal Conversion Process Due to Vapor Deposition for Mesoscale Models Using Doublemoment Basis Functions. Part I: Basic Formulation and Parcel Model Results’ J. Atmos. Sc. 52, 4344-4366.Google Scholar
  11. Hoode, E.,Williams, M., andCline, D.: 1999, ‘Sublimation from a Seasonal Snowpack at a Continental, Mid-Latitude Alpine Site’ Hydrol. Proc. 13, 1781-1797.Google Scholar
  12. King, J. C. andAnderson, P. S.: 1999, ‘A Humidity Climatology for Halley, Antarctica Based on Hygrometer Measurements’ Antarct. Sci. 11, 100-104.Google Scholar
  13. King, J. C.,Anderson, P. S.,Smith, M. C., andMobbs, S. D.: 1996, ‘The Surface Energy and Mass Balance at Halley, Antarctica during Winter’ J. Geophys. Res. 101(D14), 19,119-19,128.Google Scholar
  14. Lawford, R. G.: 1994, ‘Knowns and Unknowns in the Hydroclimatology of the Mackenzie River Basin’ in S. D. Cohen (ed.), Mackenzie Basin Impact Study (MBIS), Interim Report #2, Yellowknife, NWT, pp. 173-195.Google Scholar
  15. Mann, G. W.,Anderson, P. S., andMobbs, S. D.: 2000, ‘Profile Measurements of Blowing Snow at Halley, Antarctica’ J. Geophys. Res., 105(D19), 24,491-24,508.Google Scholar
  16. Pomeroy, J. W.,Gray, D. M., andLandine, P. G.: 1993, ‘The Prairie Blowing Snow Model: Characteristics, Validation, Operation’ J. Hydrol. 144, 165-192.Google Scholar
  17. Pomeroy, J.W.,Marsh, P., andGray, D.M.: 1997, ‘Application of a Distributed Blowing Snow Model to the Arctic’ Hydrol. Proc. 11, 1451-1464.Google Scholar
  18. Reisner, J.,Rasmussen, R. M., andBruintjes, R. T.: 1998, ‘Explicit Forecasting of Supercooled Liquid Water in Winter Storms Using the MM5 Mesoscale Model’ Quart. J. Roy. Meteorol. Soc. 124, 1071-1107.Google Scholar
  19. Rogers, R. R. andYau, M. K.: 1989, A Short Course in Cloud Physics, Third Edition, Pergamon Press, 293 pp.Google Scholar
  20. Schmidt, R. A.: 1982, ‘Vertical Profiles of Wind Speed, Snow Concentrations, and Humidity in Blowing Snow’ Boundary-Layer Meteorol. 23, 223-246.Google Scholar
  21. Schwerdtfeger, W.: 1984, Climate of the Antarctic, Developments in Atmospheric Science 15, Elsevier, 261 pp.Google Scholar
  22. Stewart, R. E.,Bachard, D.,Dunkley, R. R.,Giles, A. C.,Lawson, B.,Legal, L.,Miller, S. T.,Murphy, B. P.,Parker, M. N.,Paruk, B. J., andYau, M. K.: 1995, ‘Winter Storms over Canada’ Atmos.-Ocean 33, 223-247.Google Scholar
  23. Stewart, R. E.,Leighton, H. G.,Marsh, P.,Moore, G. W. K.,Rouse, W. R.,Soulis, S. D.,Strong, G. S.,Crawford, R. W., andKochtubajda, B.: 1998, ‘The Mackenzie GEWEX Study: The Water and Energy Cycles of a Major North American River Basin’ Bull. Amer. Meteorol. Soc. 79, 2665-2684.Google Scholar
  24. van den Broeke, M. R.: 1997, ‘Spatial and Temporal Variation of Sublimation on Antarctica: Results of a High-Resolution General Circulation Model’ J. Geophys. Res. 102(D25), 29,765-29,777.Google Scholar
  25. Vowinckel, E. andOrvig, S.: 1970, ‘The Climate of the North Polar Basin’ in S. Orvig (ed.), Climate of the Polar Regions, World Survey of Climatology, Vol. 7, Elsevier, pp. 129-252.Google Scholar
  26. Xiao, J.,Bintanja, R.,Déry, S. J.,Mann, G. W., andTaylor, P. A.: 2000, ‘An Intercomparison among Four Models of Blowing Snow’ Boundary-Layer Meteorol. 97, 109-135.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Stephen J. Déry
    • 1
  • M. K. Yau
    • 2
  1. 1.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  2. 2.Department of Atmospheric and Oceanic SciencesMcGill UniversityW., MontréalCanada

Personalised recommendations