Advances in Computational Mathematics

, Volume 7, Issue 3, pp 401–428 | Cite as

Orthogonality properties of linear combinations of orthogonal polynomials II

  • Francisco Marcellán
  • Franz Peherstorfer
  • Robert Steinbauer
Article

Abstract

Let \((P_n)\) and \(({\mathcal{P}}_n)\) be polynomials orthogonal on the unit circle with respect to the measures dσ and dµ, respectively. In this paper we consider the question how the orthogonality measures dσ and dµ are related to each other if the orthogonal polynomials are connected by a relation of the form \(\sum\nolimits_{j = 0}^{k(n)} {\gamma _{j,n} {\mathcal{P}}_{n - j} (z)} = \sum\nolimits_{j = 0}^{l(n)} {\lambda _{j,n} P_{n - j} (z)}\), for \(n \in {\mathbb{N}}\), where \(\gamma _{j,n} ,\lambda _{j,n} \in {\mathbb{C}}\). It turns out that the two measures are related by \(d\sigma \left( \phi \right) = {\mathcal{A}}\left( \phi \right)/{\mathcal{E}}\left( \phi \right)d\mu \left( \phi \right) + \sum M _j \delta \left( {e^{i\phi } - e^{i\kappa j} } \right)\) if \(l\left( n \right) + k\left( n \right) \leqslant n/3\), where \({\mathcal{A}}\) and \({\mathcal{E}}\) are known trigonometric polynomials of fixed degree and where the \(\kappa _j\)'s are the zeros of \({\mathcal{E}}\) on \(\left[ {0,\left. {2\pi } \right)} \right.\). If the \(l\left( n \right)\)'s and \(k\left( n \right)\)'s are uniformly bounded then (under some additional conditions) much more can be said. Indeed, in this case the measures dσ and dµ have to be of the form \({\mathcal{A}}\left( \phi \right)/{\mathcal{S}}\left( \phi \right)d\phi\) and \({\mathcal{E}}\left( \phi \right)/{\mathcal{S}}\left( \phi \right)d\phi\), respectively, where \({\mathcal{A}},{\mathcal{E}},{\mathcal{S}}\) are nonnegative trigonometric polynomials. Finally, the question is considered to which weight functions polynomials of the form \(\Phi _n : = \sum\nolimits_{j = 0}^{l\left( n \right)} {\lambda _{j,n} P_{n - j} } + \sum\nolimits_{j = 0}^{l\left( n \right)} {\gamma _{j,n} } P_{_{n - j} }^* ,\) where \(P_{_{n - j} }^* \left( z \right) = z^{n - j} \overline P _n \left( {1/z} \right)\) denotes the reciprocal polynomial of \(P_{n - j}\), can be orthogonal.

orthogonal polynomials unit circle measure modification Bernstein–Szegö measure 42C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.N. Bernstein, Sur une classe de polynômes orthogonaux, Comm. Kharkov Math. Soc. 4 (1930) 79–93.MATHGoogle Scholar
  2. [2]
    N.K. Bose, Digital Filters. Theory and Applications (North-Holland, 1985).Google Scholar
  3. [3]
    G. Freud, Orthogonal Polynomials (Akademiai Kiadó and Pergamon Press, New York, 1971).Google Scholar
  4. [4]
    Ya.L. Geronimus, Polynomials orthogonal on a circle and their applications. Series and approximations, in: Amer. Math. Soc. Transl. Ser. 1, Vol. 3 (Amer. Math. Soc., Providence, RI, 1962) pp. 1–78.Google Scholar
  5. [5]
    U. Grenander and G. Szegö, Toeplitz Forms and their Applications (Chelsea, New York, 2nd ed., 1984).Google Scholar
  6. [6]
    E. Godoy and F. Marcellán, An analog of the Christoffel formula for polynomial modification of a measure on the unit circle, Boll. Un. Mat. Ital. A (7) 5 (1991) 1–12.MATHMathSciNetGoogle Scholar
  7. [7]
    C. Gueguen, An introduction to displacement ranks and related fast algorithms, in: Traitement du Signal and Signal Processing, eds. J.L. Lacoume et al. (Elsevier, Amsterdam, 1987) pp. 707–780.Google Scholar
  8. [8]
    M.E. Ismail and X. Li, On sieved orthogonal polynomials IX: Orthogonality on the unit circle, Pacific J. Math. 153 (1992) 289–297.MATHMathSciNetGoogle Scholar
  9. [9]
    P. Koosis, Introduction to H p Spaces, London Mathematical Society, Lecture Note Ser. 40 (Cambridge University Press, 1980).Google Scholar
  10. [10]
    X. Li and F. Marcellán, Representations of orthogonal polynomials for modified measures, submitted.Google Scholar
  11. [11]
    F. Marcellán, F. Peherstorfer and R. Steinbauer, Orthogonality properties of linear combinations of orthogonal polynomials, Adv. Comput. Math. 5 (1996) 281–295.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Máté, P. Nevai and V. Totik, Szegö's extremum problem on the unit circle, Ann. of Math. 134 (1991) 433–453.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    F. Peherstorfer, A special class of polynomials orthogonal on the unit circle including the associated polynomials, Constr. Approx. 12(2) (1996) 161–186.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    F. Peherstorfer and R. Steinbauer, Characterization of orthogonal polynomials with respect to a functional, J. Comput. Appl. Math. 65 (1995) 339–355.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    F. Peherstorfer and R. Steinbauer, Orthogonal polynomials on ares of the unit circle II. Orthogonal polynomials with periodic reflection coefficients, J. Approx. Theory 87 (1996) 60–102.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    F. Peherstorfer and R. Steinbauer, Asymptotic behaviour of orthogonal polynomials on the unit circle with asymptotically periodic reflection coefficients, J. Approx. Theory 88 (1997) 316–353.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    F. Peherstorfer and R. Steinbauer, Note on mass-points of finite positive Borel measures, manuscript.Google Scholar
  18. [18]
    G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23 (Amer. Math. Soc., Providence, RI, 4th ed., 1975).Google Scholar
  19. [19]
    W.F. Trench, Explicit weighting coefficients for predicting ARMA time series from the finite past, J. Comput. Appl. Math. 34 (1991) 251–262.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Francisco Marcellán
    • 1
  • Franz Peherstorfer
    • 2
  • Robert Steinbauer
    • 2
  1. 1.Departamento de Matemáticas, Escuela Politécnica SuperiorUniversidad Carlos IIILeganés-MadridSpain
  2. 2.Institut für MathematikJohannes Kepler Universität LinzLinz-AuhofAustria

Personalised recommendations