, Volume 7, Issue 3, pp 401–428

# Orthogonality properties of linear combinations of orthogonal polynomials II

• Francisco Marcellán
• Franz Peherstorfer
• Robert Steinbauer
Article

## Abstract

Let $$(P_n)$$ and $$({\mathcal{P}}_n)$$ be polynomials orthogonal on the unit circle with respect to the measures dσ and dµ, respectively. In this paper we consider the question how the orthogonality measures dσ and dµ are related to each other if the orthogonal polynomials are connected by a relation of the form $$\sum\nolimits_{j = 0}^{k(n)} {\gamma _{j,n} {\mathcal{P}}_{n - j} (z)} = \sum\nolimits_{j = 0}^{l(n)} {\lambda _{j,n} P_{n - j} (z)}$$, for $$n \in {\mathbb{N}}$$, where $$\gamma _{j,n} ,\lambda _{j,n} \in {\mathbb{C}}$$. It turns out that the two measures are related by $$d\sigma \left( \phi \right) = {\mathcal{A}}\left( \phi \right)/{\mathcal{E}}\left( \phi \right)d\mu \left( \phi \right) + \sum M _j \delta \left( {e^{i\phi } - e^{i\kappa j} } \right)$$ if $$l\left( n \right) + k\left( n \right) \leqslant n/3$$, where $${\mathcal{A}}$$ and $${\mathcal{E}}$$ are known trigonometric polynomials of fixed degree and where the $$\kappa _j$$'s are the zeros of $${\mathcal{E}}$$ on $$\left[ {0,\left. {2\pi } \right)} \right.$$. If the $$l\left( n \right)$$'s and $$k\left( n \right)$$'s are uniformly bounded then (under some additional conditions) much more can be said. Indeed, in this case the measures dσ and dµ have to be of the form $${\mathcal{A}}\left( \phi \right)/{\mathcal{S}}\left( \phi \right)d\phi$$ and $${\mathcal{E}}\left( \phi \right)/{\mathcal{S}}\left( \phi \right)d\phi$$, respectively, where $${\mathcal{A}},{\mathcal{E}},{\mathcal{S}}$$ are nonnegative trigonometric polynomials. Finally, the question is considered to which weight functions polynomials of the form $$\Phi _n : = \sum\nolimits_{j = 0}^{l\left( n \right)} {\lambda _{j,n} P_{n - j} } + \sum\nolimits_{j = 0}^{l\left( n \right)} {\gamma _{j,n} } P_{_{n - j} }^* ,$$ where $$P_{_{n - j} }^* \left( z \right) = z^{n - j} \overline P _n \left( {1/z} \right)$$ denotes the reciprocal polynomial of $$P_{n - j}$$, can be orthogonal.

orthogonal polynomials unit circle measure modification Bernstein–Szegö measure 42C05

## References

1. [1]
S.N. Bernstein, Sur une classe de polynômes orthogonaux, Comm. Kharkov Math. Soc. 4 (1930) 79–93.
2. [2]
N.K. Bose, Digital Filters. Theory and Applications (North-Holland, 1985).Google Scholar
3. [3]
4. [4]
Ya.L. Geronimus, Polynomials orthogonal on a circle and their applications. Series and approximations, in: Amer. Math. Soc. Transl. Ser. 1, Vol. 3 (Amer. Math. Soc., Providence, RI, 1962) pp. 1–78.Google Scholar
5. [5]
U. Grenander and G. Szegö, Toeplitz Forms and their Applications (Chelsea, New York, 2nd ed., 1984).Google Scholar
6. [6]
E. Godoy and F. Marcellán, An analog of the Christoffel formula for polynomial modification of a measure on the unit circle, Boll. Un. Mat. Ital. A (7) 5 (1991) 1–12.
7. [7]
C. Gueguen, An introduction to displacement ranks and related fast algorithms, in: Traitement du Signal and Signal Processing, eds. J.L. Lacoume et al. (Elsevier, Amsterdam, 1987) pp. 707–780.Google Scholar
8. [8]
M.E. Ismail and X. Li, On sieved orthogonal polynomials IX: Orthogonality on the unit circle, Pacific J. Math. 153 (1992) 289–297.
9. [9]
P. Koosis, Introduction to H p Spaces, London Mathematical Society, Lecture Note Ser. 40 (Cambridge University Press, 1980).Google Scholar
10. [10]
X. Li and F. Marcellán, Representations of orthogonal polynomials for modified measures, submitted.Google Scholar
11. [11]
F. Marcellán, F. Peherstorfer and R. Steinbauer, Orthogonality properties of linear combinations of orthogonal polynomials, Adv. Comput. Math. 5 (1996) 281–295.
12. [12]
A. Máté, P. Nevai and V. Totik, Szegö's extremum problem on the unit circle, Ann. of Math. 134 (1991) 433–453.
13. [13]
F. Peherstorfer, A special class of polynomials orthogonal on the unit circle including the associated polynomials, Constr. Approx. 12(2) (1996) 161–186.
14. [14]
F. Peherstorfer and R. Steinbauer, Characterization of orthogonal polynomials with respect to a functional, J. Comput. Appl. Math. 65 (1995) 339–355.
15. [15]
F. Peherstorfer and R. Steinbauer, Orthogonal polynomials on ares of the unit circle II. Orthogonal polynomials with periodic reflection coefficients, J. Approx. Theory 87 (1996) 60–102.
16. [16]
F. Peherstorfer and R. Steinbauer, Asymptotic behaviour of orthogonal polynomials on the unit circle with asymptotically periodic reflection coefficients, J. Approx. Theory 88 (1997) 316–353.
17. [17]
F. Peherstorfer and R. Steinbauer, Note on mass-points of finite positive Borel measures, manuscript.Google Scholar
18. [18]
G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23 (Amer. Math. Soc., Providence, RI, 4th ed., 1975).Google Scholar
19. [19]
W.F. Trench, Explicit weighting coefficients for predicting ARMA time series from the finite past, J. Comput. Appl. Math. 34 (1991) 251–262.