Advances in Computational Mathematics

, Volume 8, Issue 3, pp 267–289 | Cite as

Formal vector orthogonal polynomials

  • A. Salam


The aim of this paper is to define and to study orthogonal polynomials with respect to a linear functional whose moments are vectors. We show how a Clifford algebra allows us to construct such polynomials in a natural way. This new definition is motivated by the fact that there exist natural links between this theory of orthogonal polynomials and the theory of the vector valued Padé approximants in the sense of Graves-Morris and Roberts.

Clifford group and algebra designants formal orthogonal polynomials in a non-commutative algebra qd-algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Artin, Geometric Algebra (Interscience, New York, 1966).Google Scholar
  2. [2]
    G.A. Baker, Jr. and P.R. Graves-Morris, Padé Approximants, 2nd edition (Cambridge University, New York, 1995).Google Scholar
  3. [3]
    N.K. Bose and S. Basu, Theory and recursive computation of 1-D matrix Padé approximants, IEEE Trans. Circuit Systems 27 (1980) 323–325.MATHCrossRefGoogle Scholar
  4. [4]
    C. Brezinski, Padé-Type Approximation and General Orthogonal Polynomials (Birkhäuser, Basel, 1980).MATHGoogle Scholar
  5. [5]
    C. Brezinski and J. Van Iseghem, Padé approximation, in: Handbook of Numerical Analysis, Vol. III, eds. P.G. Ciarlet and J.L. Lions (North-Holland, Amsterdam, 1994) pp. 47–222.Google Scholar
  6. [6]
    A. Bultheel, Epsilon and q-d algorithms for the matrix-Padé and 2-D Padé problem, Report TW 57, K.U. Leuven, Belgium (1982).Google Scholar
  7. [7]
    A. Cayley, On certain results relating to quaternions, Phil. Mag. 26 (1845) 141–145.Google Scholar
  8. [8]
    J. Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 7 (1943) 27–45.Google Scholar
  9. [9]
    A. Draux, Polynômes orthogonaux formels dans une algèbre non commutative, Publication ANO-92, Université des Sciences et Technologies de Lille (1982).Google Scholar
  10. [10]
    A. Draux, Approximants de type Padé et de Padé, Publication ANO-96, Université des Sciences et Technologies de Lille (1983).Google Scholar
  11. [11]
    F.J. Dyson, Quaternion determinants, Helv. Phys. Acta 45 (1972) 289–302.Google Scholar
  12. [12]
    P.R. Graves-Morris, Vector-valued rational interpolants I, Numer. Math. 42 (1983) 331–348.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    P.R. Graves-Morris, Vector-valued rational interpolants II, IMA J. Numer. Anal. 4 (1984) 209–224.MATHMathSciNetGoogle Scholar
  14. [14]
    P.R. Graves-Morris and C.D. Jenkins, Vector-valued rational interpolants III, Constr. Approx. 2 (1986) 263–289.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Heyting, Die Theorie der linearen Gleichungen in einer Zahlenspezies mit nichtkommutativer Multiplikation, Math. Ann. 98 (1927) 465–490.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    G.N. Hile and P. Lounesto, Matrix representations of Clifford algebras, Linear Algebra Appl. 128 (1990) 51–63.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    M.L. Mehta, Matrix Theory. Selected Topics and Useful Results (Les Editions de Physique, Les Ulis, 1989).Google Scholar
  18. [18]
    J.B. McLeod, A note on the ε-algorithm, Computing 7 (1971) 17–24.MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    R. Penrose, A generalised inverse for matrices, Proc. Cambridge Phil. Soc. 51 (1955) 406–413.MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    I.R. Porteous, Topological Geometry, 2nd edition (Cambridge University Press, Cambridge, 1981).MATHGoogle Scholar
  21. [21]
    A.R. Richardson, Simultaneous linear equations over a division algebra, London Math. Soc. 28 (1928) 395–420.MATHGoogle Scholar
  22. [22]
    D.E. Roberts, Clifford algebras and vector-valued rational forms I, Proc. Roy. Soc. London Ser. A 431 (1990) 285–300.MATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    D.E. Roberts, Clifford algebras and vector-valued rational forms II, Numer. Algorithms 3 (1992) 371–381.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    D.E. Roberts, On a vector q-d algorithm, to appear.Google Scholar
  25. [25]
    A. Salam, Vector Padé-type approximants and vector Padé approximants, to appear.Google Scholar
  26. [26]
    A. Salam, Non-commutative extrapolation algorithms, Numer. Algorithms 7 (1994) 225–251.MATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    A. Salam, What is a vector Hankel determinant, submitted.Google Scholar
  28. [28]
    J. Van Iseghem, Approximants de Padé vectoriels, thesis, Université des Sciences et Technologies de Lille (1987).Google Scholar
  29. [29]
    P. Wynn, Vector continued fractions, Linear Algebra Appl. 1 (1968) 357–395.MATHMathSciNetCrossRefGoogle Scholar
  30. [30]
    P. Wynn, Continued fractions whose coefficients obey a non-commutative law of multiplication, Arch. Rational Mech. Anal. 12 (1963) 273–312.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • A. Salam
    • 1
  1. 1.Laboratoire de Mathématiques AppliquéesUniversité du Littoral, C.U. de la Mi-Voix, Bât. PoincaréCalais CedexFrance E-mail:

Personalised recommendations