Pharmaceutical Research

, Volume 11, Issue 5, pp 764–771 | Cite as

Chemical and Physical Stability of Chimeric L6, a Mouse−Human Monoclonal Antibody

  • Mehdi Paborji
  • Nancy L. Pochopin
  • William P. Coppola
  • Joseph B. Bogardus


Chimeric L6 is a mouse–human monoclonal antibody specific for tumor cell-associated antigens. The factors affecting the physical and chemical stability of chimeric L6 were assessed at elevated temperatures (30–60°C) and by multiple freezing and thawing. Three routes of degradation were observed: chemical degradation to smaller molecular weight species, irreversible aggregation, and formation of a reversible dimer. The specific pathway depended on the stress condition applied and the pH, with maximal overall stability to both thermal stress and multiple freezing/thawing observed at about pH 5.5. Other factors including antibody concentration, buffer concentration, NaCl concentration, and agitation had minimal influence on the stability. Commonly used sugars, polyhydric alcohols, and amino acids effectively prevented freeze/thaw-induced aggregation.

chimeric antibody protein stability multiple freezing and thawing aggregation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Y. Liu, R. R. Robinson, K. E. Hellström, E. D. Murray, Jr., C. P. Chang, and I. Hellström. Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. Proc. Natl. Acad. Sci. 84:3439–3443 (1987).Google Scholar
  2. 2.
    S. J. DeNardo, K. A. Warhoe, L. F. O'Grady, I. Hellström, K. E. Hellström, S. L. Mills, D. J. Macey, J. E. Goodnight, and G. L. DeNardo. Radioimmunotherapy for breast cancer: Treatment of a patient with I-131 L6 chimeric monoclonal antibody. Int. J. Biol. Markers 6:221–230 (1991).Google Scholar
  3. 3.
    M. C. Manning, K. Patel, and R. T. Borchardt. Stability of protein pharmaceuticals. Pharm. Res. 6:903–918 (1989).Google Scholar
  4. 4.
    T. Koseki, N. Kitabatake, and E. Doi. Freezing denaturation of ovalbumin at acid pH. J. Biochem. 107:389–394 (1990).Google Scholar
  5. 5.
    E. Kun and E. B. Kearney. Ammonia. In H. U. Gupta (ed.), Methods of Enzymatic Analysis, Vol. 4, Academic Press, New York, 1974, pp. 1802–1806.Google Scholar
  6. 6.
    M. A. Schenerman. Personal communication, Bristol-Myers Squibb Co., Syracuse, NY.Google Scholar
  7. 7.
    D. Lavalette, C. Tetreau, J. C. Brochon, and A. K. Livesey. Conformational fluctuations and protein reactivity. Determination of the rate-constant spectrum and consequences in elementary biochemical processes. Eur. J. Biochem. 196:591–598 (1991).Google Scholar
  8. 8.
    K. Hecht, T. Langer, A. Wrba, and R. Jaenicke. Lactate dehydrogenase from the extreme halophilic archaebacterium Halobacterium marismortui. Biol. Chem. Hoppe Seyler 371:515–519 (1990).Google Scholar
  9. 9.
    R. A. Colvin and R. A. Allen. Studies of the thermal inactivation of cardiac adenylyl cyclase: Evidence for a conformational change in the reaction mechanism. Arch. Biochem. Biophys. 289:337–342 (1991).Google Scholar
  10. 10.
    H. L. Levine, T. C. Ransohoff, R. T. Kawahata, and W. C. McGregor. The use of surface tension measurements in the design of antibody-based product formulations. J. Parent. Sci. Tech. 45:160–165 (1991).Google Scholar
  11. 11.
    T. Geiger and S. Clarke. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. J. Biol. Chem. 262:785–794 (1987).Google Scholar
  12. 12.
    S. Clarke. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int. J. Peptide Protein Res. 30:808–821 (1987).Google Scholar
  13. 13.
    P. Bornstein and G. Balian. The specific nonenzymatic cleavage of bovine ribonuclease with hydroxylamine. J. Biol. Chem. 245:4854–4856 (1970).Google Scholar
  14. 14.
    U. J. Lewis, E. V. Cheever, and W. C. Hopkins. Kinetic study of the deamidation of growth hormone and prolactin. Biochim. Biophys. Acta 214:498–508 (1970).Google Scholar
  15. 15.
    L. van den Berg and D. Rose. Effect of freezing on the pH and composition of sodium and potassium phosphate solutions: The reciprocal system KH2PO4-Na2HPO4-H2O. Arch. Biochem. Biophys. 81:319–329 (1959).Google Scholar
  16. 16.
    R. D. Soltis and D. Hasz. Dissociation of IgG aggregates at low pH. Immunology 46:411–414 (1982).Google Scholar
  17. 17.
    U. B. Hansson. Ultracentrifugation studies of the aggregation of human immunoglobulin G by freezing and by heating. Acta Chem. Scand. 22:953 (1968).Google Scholar
  18. 18.
    Hyclone Laboratories, Inc. Freezing and thawing serum and other biological materials: Optimal procedures minimize damage and maximize shelf-life. Art Sci. Tissue Cult. 11:1–7 (1992).Google Scholar
  19. 19.
    J. J. Centelles and R. Franco. Heterogeneity of the gradients performed by the freeze-thaw method. J. Biochem. Biophys. Methods 18:177–182 (1989).Google Scholar
  20. 20.
    F. Franks, R. H. M. Hatley, and S. F. Mathias. Materials science and the production of shelf-stable biologicals. Pharm. Tech. 16:32–50 (1992).Google Scholar
  21. 21.
    Y. Goto and A. L. Fink. Conformational states of β-lactamase: Molten-globule states at acidic and alkaline pH with high salt. Biochemistry 28:945–952 (1989).Google Scholar
  22. 22.
    J. Baum, C. M. Dobson, P. A. Evans, and C. Hanley. Characterization of a partly folded protein by NMR methods: Studies on the molten globule state of guinea pig α-lactalbumin. Biochemistry 28:7–13 (1989).Google Scholar
  23. 23.
    C. N. Pace and G. R. Grimsley. Ribonuclease T1 is stabilized by cation and anion binding. Biochemistry 27:3242–3246 (1988).Google Scholar
  24. 24.
    M. Yamasaki and H. Yano. Differential scanning calorimetric studies on bovine serum albumin. II. Effects of neutral salts and urea. Int. J. Biol. Macromol. 3:322–328 (1991).Google Scholar
  25. 25.
    R. Pearlman and T. Nguyen. Pharmaceutics of protein drugs. J. Pharm. Pharmacol. 44(Suppl. 1):178–185 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Mehdi Paborji
    • 1
  • Nancy L. Pochopin
    • 1
  • William P. Coppola
    • 1
  • Joseph B. Bogardus
    • 1
  1. 1.Pharmaceutics Research and DevelopmentBristol-Myers Squibb CompanySyracuse

Personalised recommendations