Pharmaceutical Research

, Volume 16, Issue 9, pp 1386–1391

Skin Penetration and Metabolism of Topical Glucocorticoids in Reconstructed Epidermis and in Excised Human Skin

  • Anja Gysler
  • Burkhard Kleuser
  • Wolfgang Sippl
  • Katharina Lange
  • Hans Christian Korting
  • Hans-Dieter Höltje
  • Monika Schäfer-Korting


Purpose. To investigate pharmacokinetic differences between the non-halogenated double ester prednicarbate (PC) and the fluorinated monoester betamethasone 17-valerate (BM17V) their metabolism in human keratinocytes and fibroblasts as well as their permeation and biotransformation in reconstructed epidermis and excised human skin was compared. Special attention was given to the 17-monoesters because of their high receptor affinity and antiproliferative effects.

Methods. Glucocorticoid penetration was determined using Franz diffusion cells, quantifying metabolite concentrations by HPLC. Chemical stability and reactivity of the monoesters was determined by molecular modeling analysis.

Results. PC accumulated in the stratum corneum. A considerable amount of penetrating PC was hydrolyzed by viable keratinocytes to prednisolone 17-ethylcarbonate (P17EC). P17EC permeated the skin very rapidly when compared to BM17V. Overall P17EC concentrations in viable tissue were low. Inside of the acceptor fluid, but not within the tissue, P17EC was converted to the more stable prednisolone 21-ethylcarbonate (P21EC).

Conclusions. The inactivation of highly potent, but also cell toxic, 17-monoesters to almost inactive 21-congeners seen with isolated cell monolayers appears less important in the skin. In vitro determination of the dermal 17-monoesters concentrations may allow the prediction of the atrophogenic risk in man. BM17V levels exceeding P17EC concentrations about 6-fold may contribute to its lower tolerance when compared to PC.

benefit/risk ratio drug metabolism prednicarbate skin penetration topical glucocorticoids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Schäfer-Korting, H. C. Korting, M. J. Kerscher, and S. Lenhard. Prednicarbate activity and benefit/risk ratio in relation to other topical glucocorticoids. Clin. Pharmacol. Ther. 54:448-456 (1993).Google Scholar
  2. 2.
    N. Bodor. The application of soft drug approaches to the design of safer corticosteroids. In E. Christophers, E. Schöpf, A. M. Kligman, and R. B. Stoughton (eds.), Topical Corticosteroid Therapy—A Novel Approach to Safer Drugs, Raven Press, New York, 1988, pp. 13-25.Google Scholar
  3. 3.
    A. Gysler, K. Lange, H. C. Korting, and M. Schäfer-Korting. Prednicarbate biotransformation in human foreskin keratinocytes and fibroblasts. Pharm. Res. 14:793-97 (1997).Google Scholar
  4. 4.
    K. Lange, A. Gysler, B. Kleuser, M. Bader, H. C. Korting, and M. Schäfer-Korting. Prednicarbate versus conventional topical glucocorticoids: pharmacodynamic characterization in-vitro. Pharm Res. 14:7744-1749 (1997).Google Scholar
  5. 5.
    S. W. Collier, N. M. Sheikh, A. Sakr, J. L. Lichtin, R. F. Stewart, and R. L. Bronaugh. Maintenance of skin viability during in vitro percutaneous absorption/metabolism studies. Toxicol. Appl. Pharmacol. 99:522-533 (1989).Google Scholar
  6. 6.
    O. H. Lowry, N. J. Rosenbrough, A. Lewis Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275 (1951).Google Scholar
  7. 7.
    P. K. Smith, R. I. Krohn, G. T. Hermanson, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. Measurement of protein using bicinchonic acid. Anal. Biochem. 150:76-85 (1985).Google Scholar
  8. 8.
    H.-D. Höltje and G. Folkers. Molecular Modelling-Basic Principles and Applications, VCH Publisher, New York, 1996.Google Scholar
  9. 9.
    M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107:3902-3909 (1985).Google Scholar
  10. 10.
    C. J. Cramer and D. G. Truhlar. General parameterized SCF model for free energies of solvation in aqueous solution. J. Am. Chem. Soc. 113:8305-8311 (1991).Google Scholar
  11. 11.
    W. S. Watson and A. Y. Finlay. The effect of the vehicle formulation on the stratum corneum penetration characteristics of clobetasol propionate in vivo. Br. J. Dermatol. 118:523-527 (1988).Google Scholar
  12. 12.
    H. C. Korting, D. Vieluf, and M. Kerscher. 0.25% Prednicarbate cream and the corresponding vehicle induce less skin atrophy than 0.1% betamethasone 17-valerate cream and 0.05% clobetasol 17-propionate cream. Eur. J. Clin. Pharmacol. 42:159-161 (1992).Google Scholar
  13. 13.
    A. M. Kligman. Skin permeability: Dermatologic aspects of transdermal drug delivery. Am. Heart J. 108:200-206 (1984).Google Scholar
  14. 14.
    A. Rougier, D. Dupuis, C. Lotte, R. Roguet, and H. Schaefer. In vivo correlation between stratum corneum reservoir function and percutaneous absorption. J. Invest. Dermatol. 81:275-278 (1983).Google Scholar
  15. 15.
    U. Täuber and K. L. Rost. Esterase activity of the skin including species variations. In B. Shroot and H. Schaefer (eds.), Pharmacology and the Skin, Karger, Basel, 1987, pp. 170-183.Google Scholar
  16. 16.
    M. Pörtner, H. Möllmann, and P. Rohdewald. Glucocorticoid receptors in human synovial tissue and relative receptor affinities of glucocorticoid-21-esters. Pharm. Res. 10:623-627 (1988).Google Scholar
  17. 17.
    G. Würthwein, S. Rehder, and P. Rohdewald. Lipophilicity and receptor affinity of glucocorticoids. Pharm. Ztg. Wiss. 4:161-167 (1992).Google Scholar
  18. 18.
    J. Levy, J. Gassmüller, G. Schröder, H. Audring, and N. Sönnichsen. Comparison of the effects of calcipotriol, prednicarbate and clobetasol 17-propionate on normal skin assessed by ultrasound measurement of skin thickness. Skin Pharmacol. 7:231-236 (1994).Google Scholar
  19. 19.
    M. Liebsch, B. Döring, T. A. Donelly, P. Logemann, L. A. Rheins, and H. Spielmann. Application of the human dermal model Skin2 ZK 1350 to phototoxicity and skin corrosivity testing. Toxicol. in Vitro 9:557-562 (1995).Google Scholar
  20. 20.
    G. E. Pièrard, V. Goffin, T. Herrmanns-Le, J. Arrese, and C. Pièrard-Franchimont. Surfactant-induced dermatitis: Comparison of corneosurfametry with predictive testing on human and reconstructed skin. J. Am. Acad. Dermatol. 33:462-469 (1995).Google Scholar
  21. 21.
    A. Gysler, U. Bacher, and M. Schäfer-Korting. Penetration und Metabolisierung von Glucocorticoiden bei Hautäquivalenten und exzidierter Humanhaut. In H. Schöffl, H. Spielmann, and H. A. Tritthart (eds.), Do it in Vitro, Springer Verlag, Wien, New York, in press.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Anja Gysler
    • 1
  • Burkhard Kleuser
    • 1
  • Wolfgang Sippl
    • 2
  • Katharina Lange
    • 1
  • Hans Christian Korting
    • 3
  • Hans-Dieter Höltje
    • 2
  • Monika Schäfer-Korting
    • 1
  1. 1.Institut für Pharmazie, Abteilung für Pharmakologie und Toxikologie, Freie Universität BerlinBerlinGermany
  2. 2.Institut für PharmazieHeinrich Heine Universität DüsseldorfDüsseldorfGermany
  3. 3.Dermatologische Klinik und PoliklinikLudwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations