Pharmaceutical Research

, Volume 10, Issue 6, pp 816–822 | Cite as

Calibration of a Compaction Simulator for the Measurement of Tablet Thickness During Compression

  • Lovelace E. Holman
  • Keith Marshall


For the calibration of a compaction simulator for punch displacement measurements, the displacement of the punch must be related to the voltage output of a linear variable displacement transducer (LVDT) which is attached to the punch via its movable core, with correction for any deformation of the machine parts which are inherently incorporated in the LVDT readings. Contrary to common assumptions the relationship between the displacement of the movable core and the voltage output of the LVDTs used is not linear. Similarly, the deformation of the machine parts did not follow Hooke's law of linear elasticity but exhibited characteristics of nonlinear elasticity. The data demonstrate the need for careful validation of the calibration of a compaction simulator when accurate punch displacements are required.

linear variable displacement transducer (LVDT) calibration punch deformation compaction simulator nonlinear elasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Parmentier. Untersuchungen zur Interpretation von Kraft-Weg-Diagrammen. Pharm. Ind. 40:860–865 (1978).Google Scholar
  2. 2.
    N. A. Armstrong and L. P. Blundell. The effect of machine speed on the compaction of some directly compressible tablet diluents. J. Pharm. Pharmacol. 37:9–13 (1985).Google Scholar
  3. 3.
    C. Führer, G. Bayraktar-Alpmen, and M. Schmidt. Untersuchungen von Kraft-Weg-Diagrammen bei der Tablettierung von Pulvermischungen. Acta Pharm. Techn. 23:215–224 (1977).Google Scholar
  4. 4.
    J. Hilmann and P. Fuchs. Messanordnung zur Darstellung der Kompressionscharacteristik von Pressmassen an Exzenterpressen und ihre Aussagefähigkeit. Pharm. Ind. 39:72–76 (1977).Google Scholar
  5. 5.
    B. Emschermann and F. Müller. Auswertung der Kraftmessung beim Tablettieren. Pharm. Ind. 43:191–194 (1981).Google Scholar
  6. 6.
    F. Müller and U. Caspar. Viskoelastische Phänomene während der Tablettierung. Pharm. Ind. 46:1049–1056 (1984).Google Scholar
  7. 7.
    E. Shotton, J. J. Deer, and D. Ganderton. The instrumentation of a rotary tablet machine. J. Pharm. Pharmacol. 15 (Suppl.):106T–114T (1963).Google Scholar
  8. 8.
    C. Führer. Ueber den Druckverlauf bei den Tablettierung. Pharm. Ind. 25:674–676 (1963).Google Scholar
  9. 9.
    B. Mechterscheimer and H. Sucker. The effects of punch face geometry and different magnesium stearate/talc combinations on tabletting properties. Pharm. Technol. 10(2):38–50 (1986).Google Scholar
  10. 10.
    P. C. Schmidt and U. Tenter. Zur Wegmessung an Rundlauftablettenpressen. Pharm. Ind. 47:426–430 (1985).Google Scholar
  11. 11.
    P. C. Schmidt and H. Koch. Zur Auswertung von Presskraft-Zeit-Kurven. Eur. J. Pharm. Biopharm. 37:7–13 (1991).Google Scholar
  12. 12.
    J. T. Walter and L. L. Augsberger. A computerized force/displacement instrumentation system for a rotary press. Pharm. Technol. 10(2):26–34 (1986).Google Scholar
  13. 13.
    L. E. Holman. The compaction behaviour of particulate materials. An elucidation based on percolation theory. Powder Technol. 66:265–280 (1991).Google Scholar
  14. 14.
    L. E. Holman. The compressibility of pharmaceutical particulate systems. An illustration of percolation. Int. J. Pharm. 71:81–94 (1991).Google Scholar
  15. 15.
    M. Celik and K. Marshall. Use of a compaction simulator in tabletting research. 1. Introduction to and initial experiments with the system. Drug Dev. Ind. Pharm. 15:759–800 (1989).Google Scholar
  16. 16.
    S. D. Bateman, M. H. Rubinstein, R. C. Rowe, R. J. Roberts, P. Drew, and A. Y. K. Ho. A comparative investigation of compression simulators. Int. J. Pharm. 49:209–212 (1989).Google Scholar
  17. 17.
    R. J. Roberts and R. C. Rowe. The effect of punch velocity on the compaction of a variety of materials. J. Pharm. Pharmacol. 37:377–384 (1985).Google Scholar
  18. 18.
    A. Ho, J. F. Barker, J. Spence, and T. M. Jones. A comparison of three methods of mounting a linear variable displacement transducer on an instrumented tablet machine. J. Pharm. Pharmacol. 31:471–472 (1979).Google Scholar
  19. 19.
    G. W. Snedecor and W. G. Cochran. Statistical Methods, 7th ed., Iowa State University Press, Ames, 1980.Google Scholar
  20. 20.
    N. Draper and H. Smith. Applied Regression Analysis, 2nd ed., Wiley, New York, 1981.Google Scholar
  21. 21.
    S. Bolton. Pharmaceutical Statistics, Practical and Clinical Application, Marcel Dekker, New York, 1984.Google Scholar
  22. 22.
    H. Hertz. Gesammelte Werke, Vol. I. Leipzig, 1895. (Through Ref. 23.)Google Scholar
  23. 23.
    R. J. Roark. Formulas for stress and strain, McGraw Hill, New York, 1975.Google Scholar
  24. 24.
    F. Müller and D. Schierstedt. Elimination der Stauchung bei Kraft-Weg-Messungen mit Exzentermaschinen. Pharm. Ind. 44:834–837 (1982).Google Scholar
  25. 25.
    R. J. Oates and A. G. Mitchell. Comparison of calculated and experimentally determined punch displacement on a rotary tablet press using both manesty and IPT punches. J. Pharm. Pharmacol. 42:388–396 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Lovelace E. Holman
    • 1
  • Keith Marshall
    • 1
  1. 1.Research and Development Division, Pharmaceutical Sciences DepartmentSmithKline Beecham PharmaceuticalsKing of Prussia

Personalised recommendations