Advertisement

Pharmaceutical Research

, Volume 11, Issue 12, pp 1815–1819 | Cite as

Enantioselective Kinetics of Verapamil and Norverapamil in Isolated Perfused Rat Livers

  • Reza Mehvar
  • James M. Reynolds
  • Megan A. Robinson
  • James A. Longstreth
Article

Abstract

The kinetics of the individual enantiomers of verapamil (VER) and its metabolite, norverapamil (NOR), were studied in isolated perfused rat livers (IPRLs) after administration of racemic drug or the preformed metabolite. After constant infusion of 20 µg/min of racemic VER to single-pass IPRLs, the hepatic availabilities (F) of the enantiomers were low (S-VER, 0.069 ± 0.030; R-VER: 0.046 ± 0.025) and stereoselective (S:R ratio, 1.6 ± 0.2). After administration of similar doses, the F values of the preformed NOR enantiomers (S-NOR: 0.24 ± 0.04; R-NOR, 0.10 ± 0.02) were higher than those of the VER enantiomers. However, the stereoselectivity in F of NOR (S:R ratio, 2.2 ± 0.1), was in the same direction of that of VER. Further, the fractions of R enantiomers unbound to bovine serum albumin in the perfusate were higher than those of their antipodes for both VER (R:S ratio, 1.9 ± 0.1) and NOR (R:S ratio, 2.6 ± 0.2). Therefore, for unbound moieties, modest stereoselectivity in the metabolism of VER in favor of the S-isomer and no stereoselectivity in the metabolism of NOR were observed. Overall, our data suggest that the stereoselective protein binding is a primary determinant of stereoselectivity in the hepatic availability of VER and NOR in IPRLs.

verapamil noverapamil stereoselective metabolism isolated perfused rat liver metabolite kinetics, first-pass metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    H. Echizen, M. Manz, and M. Eichelbaum. Electrophysiologic effects of dextro-and levo-verapamil on sinus node and AV node function in humans. J. Cardiovasc. Pharmacol. 12: 543–546 (1988).Google Scholar
  2. 2.
    S. R. Hamann, R. A. Blouin, and R. G. McAllister, Jr. Clinical pharmacokinetics of verapamil. Clin. Pharmacokin. 9: 26–41 (1984).Google Scholar
  3. 3.
    H. M. McIlhenny. Metabolism of [14C]Verapamil. J. Med. Chem. 14: 1178–1184 (1971).Google Scholar
  4. 4.
    R. G. McAllister, Jr., D. W. A. Bourne, and L. W. Dittert. The pharmacology of verapamil. I. Elimination kinetics in dogs and correlation of plasma levels with effect on the electrocardiogram. J. Pharmacol. Exp. Ther. 202: 38–44 (1977).Google Scholar
  5. 5.
    E. L. Todd and D. R. Abernethy. Physiological pharmacokinetics and pharmacodynamics of (+/−)-verapamil in female rats. Biopharm. Drug Dispos. 8: 285–297 (1987).Google Scholar
  6. 6.
    J. C. Giacomini, W. L. Nelson, L. Theodore, F. M. Wong, D. Rood, and K. M. Giacomini. The pharmacokinetics and pharmacodynamics of d-and dl-verapamil in rabbits. J. Cardiovasc. Pharmacol. 7: 469–475 (1985).Google Scholar
  7. 7.
    P. Manitpisitkul and W. L. Chiou. Intravenous verapamil kinetics in rats: Marked arteriovenous concentration difference and comparison with humans. Biopharm. Drug Dipos. 14: 555–566 (1993).Google Scholar
  8. 8.
    B. Vogelgesang, H. Echizen, E. Schmidt and M. Eichelbaum. Stereoselective first-pass metabolism of highly cleared drugs: studies of the bioavailability ofL-andD-verapamil examined with stable isotope technique. Br. J. Clin. Pharmacol. 18: 733–740 (1984).Google Scholar
  9. 9.
    G. Mikus, M. Eichelbaum, C. Fischer, S. Gumulka, U. Klotz, and H. K. Kroemer. Interaction of verapamil and cimetidine: Stereochemical aspects of drug metabolism, drug disposition and drug action. J. Pharmacol. Exp. Ther. 253: 1042–1048 (1990).Google Scholar
  10. 10.
    H. K. Kroemer, H. Echizen, H. Heidemann, and M. Eichelbaum. Predictability of the in vivo metabolism of verapamil from in vitro data: Contribution of individual metabolic pathways and stereoselective aspects. J. Pharmacol. Exp. Ther. 260: 1052–1057 (1992).Google Scholar
  11. 11.
    D. R. Abernethy, I. W. Wainer, J. A. Longstreth, and N. S. Andrawis. Stereoselective verapamil disposition and dynamics in aging during racemic verapamil administration. J. Pharmacol. Exp. Ther. 266: 904–911 (1993).Google Scholar
  12. 12.
    S. A. Bai, S. M. Lankford, and L. M. Johnson. Pharmacokinetics of the enantiomers of verapamil in the dog. Chirality 5: 436–442 (1993).Google Scholar
  13. 13.
    K. S. Pang. Liver perfusion studies in drug metabolism and drug toxicity. In J. R. Mitchell and M. G. Horning (eds.), Drug Metabolism and Drug Toxicity, Raven Press, New York, 1984, pp. 331–352.Google Scholar
  14. 14.
    W. L. Nelson, E. D. Olsen, D. B. Beitner, and R. J. Pallow, Jr. Regiochemistry and substrate stereoselectivity of O-demethylation of verapamil in the presence of the microsomal fraction from rat and human liver. Drug Metab. Dispos. 16: 184–188 (1988).Google Scholar
  15. 15.
    W. L. Nelson and L. D. Olson. Regiochemistry and enantioselectivity in the oxidative N-dealkylation of verapamil. Drug Metab. Dispos. 16: 834–841 (1988).Google Scholar
  16. 16.
    J. R. Cashman. Enantioselective N-oxygenation of verapamil by the hepatic flavin-containing monooxygenase. Mol. Pharmacol. 36: 497–503 (1989).Google Scholar
  17. 17.
    R. Mehvar, J. M. Reynolds, and T. L. Shepard. Disposition of fluorescein-labelled dextran (150 kD) in isolated perfused livers from control and diabetic rats. Life Sci. 49: 1699–1706 (1991).Google Scholar
  18. 18.
    A. Shibukawa and I. W. Wainer. Simultaneous direct determination of the enantiomers of verapamil and norverapamil in plasma using a derivatized amylose high-performance liquid chromatographic chiral stationary phase. J. Chromatogr. 574: 85–92 (1992).Google Scholar
  19. 19.
    G. R. Wilkinson and D. G. Shand. A physiological approach to hepatic drug clearance. Clin. Pharmacol. Ther. 18: 377–390 (1975).Google Scholar
  20. 20.
    K. S. Pang and K. C. Kwan. A commentary: Methods and assumptions in the kinetics estimation of metabolite formation. Drug Metab. Dispos. 11: 79–84 (1983).Google Scholar
  21. 21.
    Y. K. Tam, M. Yau, R. Berzins, P. R. Montgomery, and M. Gray. Mechanisms of lidocaine kinetics in the isolated perfused rat liver. I. Effects of continuous infusion. Drug Metab. Dispos. 15: 12–16 (1987).Google Scholar
  22. 22.
    M. D. Hussain, Y. K. Tam, M. R. Gray, and R. T. Coutts. Mechanisms of time-dependent kinetics of diltiazem in the isolated perfused rat liver. Drug Metab. Dispos. 22: 36–42 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Reza Mehvar
    • 1
  • James M. Reynolds
    • 1
  • Megan A. Robinson
    • 1
  • James A. Longstreth
    • 2
  1. 1.College of Pharmacy and Health SciencesDrake UniversityDes Moines
  2. 2.G.D. Searle & Co.Skokie

Personalised recommendations