Pharmaceutical Research

, Volume 11, Issue 2, pp 324–330 | Cite as

In Vitro and in Vivo Transport of Zidovudine (AZT) Across the Blood–Brain Barrier and the Effect of Transport Inhibitors

  • Rosalinde Masereeuw
  • Ulrich Jaehde
  • Mariska W. E. Langemeijer
  • Albertus G. de Boer
  • Douwe D. Breimer


The transport of the antiviral nucleoside analogue zidovudine (3′-azido-3′-deoxythymidine; AZT) into the central nervous system (CNS) was characterized in vitro and in vivo. The in vitro model consisted of primary cultures of isolated bovine capillary endothelial cells. The transport rate of AZT across the monolayer, expressed as endothelial permeability P, was determined following luminal and abluminal administration. P did not differ between the two administration sites (luminal, 1.65 ± 0.44 cm/min/103; abluminal, 1.63 ± 0.28 cm/min/103). The transport of AZT across the endothelial cell monolayer was found to be concentration independent in the range between 0.4 and 50 µg/mL. AZT transport was not affected by pre-treatment of the cells with either metabolic inhibitors (DODG and DODG/NaN3) or probenecid. This suggests that AZT passes the monolayer mainly by passive diffusion. The in vivo transport of AZT across the blood–brain barrier and the blood–CSF barrier was studied in male Wistar rats after coadministration of potential inhibitors of active transport of AZT: probenecid (organic anion transport) and thymidine (nucleoside transport). Intracerebroventricular and intravenous coadministration of probenecid caused a significant (P < 0.001) increase in the CSF/plasma concentration ratio compared to the control phase, indicating that the organic anion carrier is involved in AZT transport from CSF to blood. Since there was no effect of probenecid on the transport of AZT in vitro, it is suggested that this carrier is located at the choroid plexus. Coadministration of thymidine did not affect the CSF/plasma concentration ratio, suggesting that a nucleoside carrier system is not involved in AZT transport into or out of the CNS.

azidothymidine (AZT) central nervous system blood–brain barrier brain cerebrospinal fluid transport acquired immunodeficiency syndrome (AIDS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Yarchoan and S. Broder. Antiretroviral therapy of AIDS and related disorders: General principles and specific development of dideoxynucleosides. Pharmacol. Ther. 40:329–348 (1989).Google Scholar
  2. 2.
    R. Yarchoan, H. Mitsuya, C. E. Myers, et al. Clinical pharmacology of 3′-azido-2′,3′-dideoxythymidine (zidovudine) and related dideoxynucleosides. N. Engl. J. Med. 321:726–738 (1989).Google Scholar
  3. 3.
    M. A. Fischl. State of antiretroviral therapy with zidovudine. AIDS 3 (Suppl. 1):S137–S143 (1989).Google Scholar
  4. 4.
    L. Resnick, J. R. Berger, P. Shapshak, et al. Early penetration of the blood-brain barrier by HIV. Neurology 38:9–14 (1988).Google Scholar
  5. 5.
    R. M. Levy, D. E. Bredesen, and M. L. Rosenblum. Neurological manifestations of the acquired immunodeficiency syndrome (AIDS): Experience at UCSF and review of the literature. J. Neurosurg. 62:475–495 (1985).Google Scholar
  6. 6.
    R. W. Price, B. Brew, J. Sidtis, et al. The brain in AIDS: Central nervous system HIV-I infection and AIDS dementia complex. Science 239:586–592 (1988).Google Scholar
  7. 7.
    C. Pedersen, C. Thomsen, P. Arlien-Soborg, et al. Central nervous system involvement in human immunodeficiency virus disease. Dan. Med. Bull. 38 (4):374–379 (1991).Google Scholar
  8. 8.
    P. Portegies, J. De Gans, J. M. A. Lange, et al. Declining incidence of AIDS dementia complex after introduction of zidovudine treatment. Br. Med. J. 299:819–821 (1989).Google Scholar
  9. 9.
    R. E. Galinsky, B. L. Hoesterey, and B. D. Anderson. Brain and cerebrospinal fluid uptake of zidovudine (AZT) in rats after intravenous injection. Life Sci. 47:781–788 (1990).Google Scholar
  10. 10.
    A. R. Rachlis. Zidovudine (Retrovir) update. Can. Med. Assoc. J. 143 (11):1177–1185 (1990).Google Scholar
  11. 11.
    J. B. M. M. Van Bree, A. G. de Boer, M. Danhof, et al. Characterization of an “in vitro” blood-brain barrier: Effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J. Pharmacol. Exp. Ther. 3:1233–1239 (1988).Google Scholar
  12. 12.
    J. B. M. M. Van Bree, A. V. Baljet, A. Van Geyt, et al. The unit impulse response theory for the pharmacokinetic evaluation of drug entry into the central nervous system. J. Pharmacokin. Biopharm. 17:441–462 (1989).Google Scholar
  13. 13.
    K. L. Audus and R. T. Borchardt. Characterization of an in vitro blood-brain barrier model for studying drug transport and metabolism. Pharm. Res. 3:81–87 (1986).Google Scholar
  14. 14.
    J. B. M. M. Van Bree, D. L. Ypey, A. G. De Boer, et al. Trans-endothelial electrical resistance (TEER) of an in vitro blood-brain barrier: An indicator of drug permeability? (Submitted for publication).Google Scholar
  15. 15.
    W. C. Bowman and M. J. Rand. Drug treatment of viral infections. In W. C. Bowman and M. J. Rand (eds.), Textbook of Pharmacology, 2nd ed., Blackwell Scientific, London, 1980, p. 33.23.Google Scholar
  16. 16.
    M. Sittig (ed.). Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2nd ed., Noyes, NJ, 1985.Google Scholar
  17. 17.
    R. Spector and A. V. Lorenzo. The effects of salicylate and probenecid on the cerebrospinal fluid transport of penicillin, aminosalicylic acid and iodide. J. Pharmacol. Exp. Ther. 188:55–65 (1974).Google Scholar
  18. 18.
    J. A. Cooper, P. J. Delvecchio, F. L. Minnear, et al. Measurement of albumin permeability across endothelial monolayers in vitro. J. Appl. Physiol. 62:1076–1083 (1987).Google Scholar
  19. 19.
    H. J. Bouman and T. B. Van Wimmersma Greidanus. A rapid and simple cannulation technique for repeated sampling of cerebrospinal fluid in freely moving rats. Brain Res. Bull. 4:575–577 (1979).Google Scholar
  20. 20.
    H. Benveniste and P. C. Huttemeier. Microdialysis-theory and application. Progr. Neurobiol. 35:195–215 (1990).Google Scholar
  21. 21.
    R. Kupferschmidt and R. W. Schmid. Specific routine determination of 3′-azido-3′-deoxythymidine (AZT) in plasma by partly automated liquid chromatography. Clin. Chem. 35:1313–1317 (1989).Google Scholar
  22. 22.
    H. Suzuki, Y. Sawada, Y. Sugiyama, et al. Transport of imipenem, a novel carbapenem antibiotic, in the rat central nervous system. J. Pharmacol. Exp. Ther. 250:979–984 (1988).Google Scholar
  23. 23.
    T. Terasaki and W. M. Pardridge. Restricted transport of 3′-azido-3′ deoxythymidine and dideoxynucleosides through the blood-brain barrier. J. Infect. Dis. 158:630–632 (1988).Google Scholar
  24. 24.
    R. Spector. Drug transport in the central nervous system: Role of carriers. Pharmacology 40:1–7 (1990).Google Scholar
  25. 25.
    R. Yarchoan, J. M. Pluda, C. F. Perno, et al. Initial clinical experience with dideoxynucleosides as single agents and in combination therapy. Ann. N.Y. Acad. Sci. 616:328–343 (1990).Google Scholar
  26. 26.
    R. J. Sawchuk and M. A. Hedaya. Modeling the enhanced uptake of zidovudine (AZT) into cerebrospinal fluid. 1. Effect of probenecid. Pharm. Res. 7 (4):332–338 (1990).Google Scholar
  27. 27.
    M. A. Hedaya, W. F. Elmquist, and R. J. Sawchuk. Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human volunteers. Pharm. Res. 7:411–417 (1990).Google Scholar
  28. 28.
    P. De Miranda, T. C. Burnette, and S. Good. Tissue distribution and metabolic disposition of zidovudine in rats. Drug Metab. Dis. 18:315–320 (1989).Google Scholar
  29. 29.
    M. A. Hedaya and R. J. Sawchuk. Effect of probenecid on the renal and nonrenal clearances of zidovudine and its distribution into cerebrospinal fluid in the rabbit. J. Pharm. Sci. 78:716–722 (1989).Google Scholar
  30. 30.
    B. G. Petty, D. M. Kornhauser, and P. S. Lietman. Zidovudine with probenecid: A warning. Lancet 1044–1045 (1990).Google Scholar
  31. 31.
    R. Spector. Thymidine transport in the central nervous system. J. Neurochem. 35:1092–1098 (1980).Google Scholar
  32. 32.
    R. Spector and W. G. Berlinger. Localization and mechanism of thymidine transport in the central nervous system. J. Neurochem. 39:837–841 (1982).Google Scholar
  33. 33.
    E. M. Cornford and W. H. Oldendorf. Independent blood-brain barrier transport systems for nucleic acid precursors. Biochim. Biophys. Acta 394:211–219 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Rosalinde Masereeuw
    • 1
  • Ulrich Jaehde
    • 1
  • Mariska W. E. Langemeijer
    • 1
  • Albertus G. de Boer
    • 1
  • Douwe D. Breimer
    • 1
  1. 1.Leiden/Amsterdam Center for Drug Research, Division of PharmacologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations