A taxonomy of parallel strategies for deduction

  • Maria Paola Bonacina

Abstract

This paper presents a taxonomy of parallel theorem-proving methods based on the control of search (e.g., master–slaves versus peer processes), the granularity of parallelism (e.g., fine, medium and coarse grain) and the nature of the method (e.g., ordering-based versus subgoal-reduction). We analyze how the different approaches to parallelization affect the control of search: while fine and medium–grain methods, as well as master-slaves methods, generally do not modify the sequential search plan, parallel-search methods may combine sequential search plans (multi-search) or extend the search plan with the capability of subdividing the search space (distributed search). Precisely because the search plan is modified, the latter methods may produce radically different searches than their sequential base, as exemplified by the first distributed proof of the Robbins theorem generated by the Modified Clause-Diffusion prover Peers-mcd. An overview of the state of the field and directions for future research conclude the paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Alouini, Concurrent garbage collector for concurrent rewriting, in: Proceedings of the 6th RTA, <nt>ed. </nt> J. Hsiang, Lecture Notes in Computer Science, Vol. 914 (Springer, Berlin, 1995) pp. 132-146.Google Scholar
  2. [2]
    I. Alouini, Étude et mise en oeuvre de la réecriture conditionnelle concurrente sur des machines parallèles à mémoire distribuée, Ph.D. thesis, Université Henri Poincaré Nancy 1 (May 1997).Google Scholar
  3. [3]
    O.L. Astrachan and D.W. Loveland, METEORs: high performance theorem provers using model elimination, in: Automated Reasoning: Essays in Honor of Woody Bledsoe, <nt>ed. </nt> R.S. Boyer (Kluwer Academic, 1991).Google Scholar
  4. [4]
    J. Avenhaus and J. Denzinger, Distributing equational theorem proving, in: Proceedings of the 5th RTA, ed. C. Kirchner, Lecture Notes in Computer Science, Vol. 690 (Springer, Berlin, 1993) pp. 62-76.Google Scholar
  5. [5]
    J. Avenhaus, J. Denzinger and M. Fuchs, DISCOUNT: a system for distributed equational deduction, in: Proceedings of the 6th RTA, ed. J. Hsiang, Lecture Notes in Computer Science, Vol. 914 (Springer, Berlin, 1995) pp. 397-402.Google Scholar
  6. [6]
    L. Bachmair and H. Ganzinger, A theory of resolution, Technical Report MPI-I-97-2-005, Max Planck Institut für Informatik (1997); to appear in: Handbook of Automated Reasoning, <nt>eds. </nt> J.A. Robinson and A. Voronkov.Google Scholar
  7. [7]
    L. Bachmair, H. Ganzinger, C. Lynch and W. Snyder, Basic paramodulation, Inform. Comput. 121(2) (1995) 172-192.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    P. Baumgartner, Hyper tableaux-the next generation, in: Proceedings of TABLEAUX-98, <nt>ed. </nt> H. de Swart, Lecture Notes in Artificial Intelligence, Vol. 1397 (Springer, Berlin, 1998) pp. 60-76.Google Scholar
  9. [9]
    P. Baumgartner and S. Brüning. A disjunctive positive refinement of model elimination and its application to subsumption deletion. J. Autom. Reason. 19 (1997) 205-262.MATHCrossRefGoogle Scholar
  10. [10]
    P. Baumgartner, N. Eisinger and U. Furbach, A confluent connection calculus, in: Proceedings of the 16th CADE, ed. H. Ganzinger, Lecture Notes in Artificial Intelligence, Vol. 1632 (Springer, Berlin, 1999) pp. 329-434.Google Scholar
  11. [11]
    W. Bibel and E. Eder, Methods and calculi for deduction, in: [59], pp. 68-183.Google Scholar
  12. [12]
    W. Bibel, Automated Theorem Proving (Friedr. Vieweg & Sohn, 2nd edition, 1987).Google Scholar
  13. [13]
    J.-P. Billon, The disconnection method, in: Proceedings of TABLEAUX-96, <nt>eds. </nt> P. Miglioli, U. Moscato, D. Mundici and M. Ornaghi, Lecture Notes in Artificial Intelligence, Vol. 1071 (Springer, Berlin, 1996) pp. 110-126.Google Scholar
  14. [14]
    M.P. Bonacina, Experiments with subdivision of search in distributed theorem proving, in: [66], pp. 88-100.Google Scholar
  15. [15]
    M.P. Bonacina, Distributed automated deduction, Ph.D. thesis, Department of Computer Science, State University of New York at Stony Brook (December 1992).Google Scholar
  16. [16]
    M.P. Bonacina, On the reconstruction of proofs in distributed theorem proving: a modified Clause-Diffusion method. J. Symbolic Comput. 21 (1996) 507-522.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    M.P. Bonacina, The Clause-Diffusion theorem prover Peers-mcd, in: Proceedings of the 14th CADE, <nt>ed. </nt> W.W. McCune, Lecture Notes in Artificial Intelligence, Vol. 1249 (Springer, Berlin, 1997) pp. 53-56.Google Scholar
  18. [18]
    M.P. Bonacina, Mechanical proofs of the Levi commutator problem, in: Notes of the CADE-15 Workshop on Problem Solving Methodologies with Automated Deduction, eds. P. Baumgartner et al. (1998) pp. 1-10.Google Scholar
  19. [19]
    M.P. Bonacina, A taxonomy of theorem-proving strategies, in: Artificial Intelligence Today, eds. M.J.Wooldridge and M. Veloso, Lecture Notes in Artificial Intelligence, Vol. 1600 (Springer, Berlin, 1999) pp. 43-84.Google Scholar
  20. [20]
    M.P. Bonacina, A model and a first analysis of distributed-search contraction-based strategies, Ann. Math. Artif. Intell. 27(1-4) (1999) 149-199.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    M.P. Bonacina and J. Hsiang, Parallelization of deduction strategies: an analytical study, J. Autom. Reason. 13 (1994) 1-33.MathSciNetCrossRefGoogle Scholar
  22. [22]
    M.P. Bonacina and J. Hsiang, The Clause-Diffusion methodology for distributed deduction. Fund. Inform. 24 (1995) 177-207.MATHMathSciNetGoogle Scholar
  23. [23]
    M.P. Bonacina and J. Hsiang, Distributed deduction by Clause-Diffusion: distributed contraction and the Aquarius prover. J. Symbol. Comput. 19 (1995) 245-267.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    M.P. Bonacina and J. Hsiang, Towards a foundation of completion procedures as semidecision procedures. Theor. Comput. Sci. 146 (1995) 199-242.MATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    M.P. Bonacina and J. Hsiang, On semantic resolution with lemmaizing and contraction and a formal treatment of caching, New Generation Computing 16(2) (1998) 163-200.MathSciNetCrossRefGoogle Scholar
  26. [26]
    M.P. Bonacina and J. Hsiang, On the modelling of search in theorem proving-towards a theory of strategy analysis, Inform. Comput. 147 (1998) 171-208.MATHMathSciNetCrossRefGoogle Scholar
  27. [27]
    M.P. Bonacina and W.W. McCune, Distributed theorem proving by Peers, in: Proceedings of the 12th CADE, <nt>ed. </nt> A. Bundy, Lecture Notes in Artificial Intelligence, Vol. 814 (Springer, Berlin, 1994) pp. 841-845.Google Scholar
  28. [28]
    S. Bose, E.M. Clarke, D.E. Long and S. Michaylov, Parthenon: a parallel theorem prover for non-Horn clauses, J. Autom. Reason. 8(2) (1992) 153-182.MATHMathSciNetGoogle Scholar
  29. [29]
    R. Bündgen, M. Göbel and W. Küchlin, Parallel ReDuX ! PaReDuX, in: Proceedings of the 6th RTA, ed. J. Hsiang, Lecture Notes in Computer Science, Vol. 914 (Springer, Berlin, 1995) pp. 408-413.Google Scholar
  30. [30]
    R. Bündgen, M. Göbel and W. Küchlin, A master-slave approach to parallel term-rewriting on a hierarchical multiprocessor, in: Proceedings of the 4th DISCO, <nt>eds. </nt> J. Calmet and C. Limongelli, Lecture Notes in Computer Science, Vol. 1128 (Springer, Berlin, 1996) pp. 184-194.Google Scholar
  31. [31]
    R. Bündgen, M. Göbel and W. Küchlin, Strategy-compliant multi-threaded term completion, J. Symbolic Comput. 21(4-6) (1996) 475-506.MATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    R. Caferra and N. Zabel, A method for simultaneous search for refutations and models by equational constraint solving, J. Symbolic Comput. 13 (1992) 613-641.MATHMathSciNetCrossRefGoogle Scholar
  33. [33]
    S.E. Conry, D.J. MacIntosh and R.A. Meyer, DARES: a Distributed Automated Reasoning System, in: Proceedings of the 11th AAAI (1990) pp. 78-85.Google Scholar
  34. [34]
    M. D'Agostino, D.M. Gabbay, R. Hähnle and J. Posegga, eds., Handbook of Tableau Methods (Kluwer, 1998).Google Scholar
  35. [35]
    B.I. Dahn, Robbins algebras are Boolean: a revision of McCune's computer-generated solution of Robbins problem, J. Algebra 208 (1998) 526-532.MATHMathSciNetCrossRefGoogle Scholar
  36. [36]
    B.I. Dahn, J. Gehne, Th. Honigmann and A. Wolf, Integration of automated and interactive theorem proving in ILF, in: Proceedings of the 14th CADE, W.W. McCune, Lecture Notes in Artificial Intelligence, Vol. 1249 (Springer, Berlin, 1997) pp. 57-60.Google Scholar
  37. [37]
    M. Davis, G. Logemann and D.W. Loveland, A machine program for theorem-proving, Comm. ACM 5 (1962) 394-397.MATHMathSciNetCrossRefGoogle Scholar
  38. [38]
    M. Davis and H. Putnam, A computing procedure for quantification theory, J. ACM 7 (1960) 201-215.MATHMathSciNetCrossRefGoogle Scholar
  39. [39]
    J. Denzinger, Teamwork: a method to design distributed knowledge based theorem provers, Ph.D. thesis, Universität Kaiserslautern (1993).Google Scholar
  40. [40]
    J. Denzinger and B.I. Dahn, Cooperating theorem provers, in: Automated Deduction-A Basis for Applications, <nt>eds. </nt> W. Bibel and P.H. Schmitt, Vol. 2 (Kluwer Academic, 1998).Google Scholar
  41. [41]
    J. Denzinger and D. Fuchs, Cooperation of heterogeneous provers, in: Proceedings of IJCAI-99 (Morgan Kaufmann, 1999) pp. 10-15. M.P. Bonacina / A taxonomy of parallel strategies for deduction 255Google Scholar
  42. [42]
    J. Denzinger, M. Fuchs and M. Fuchs, High performance ATP systems by combining several AI methods, in: Proceedings of IJCAI-97 (Morgan Kaufmann, 1997) pp. 102-107.Google Scholar
  43. [43]
    J. Denzinger and M. Fuchs, Goal-oriented equational theorem proving using Team-Work, in: Proceedings of the 18th KI, Lecture Notes in Artificial Intelligence, Vol. 861 (Springer, Berlin, 1994) pp. 343-354.Google Scholar
  44. [44]
    J. Denzinger and M. Kronenburg, Planning for distributed theorem proving: the teamwork approach, in: Proceedings of the 20th KI, <nt>ed. </nt> S. Hölldobler, Lecture Notes in Artificial Intelligence, Vol. 1137 (Springer, Berlin, 1996) pp. 43-56.Google Scholar
  45. [45]
    J. Denzinger and J. Lind, Twlib: a library for distributed search applications, in: Proceedings of ICS-96, <nt>ed. </nt> Ch.-S. Yang (1996) pp. 101-108.Google Scholar
  46. [46]
    J. Denzinger and St. Schulz, Recording and analyzing knowledge-based distributed deduction processes, J. Symbolic Comput. 21(4-6) (1996) 523-541.MATHCrossRefGoogle Scholar
  47. [47]
    N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in: Handbook of Theoretical Computer Science, ed. J. van Leeuwen, Vol. B (Elsevier, 1990) pp. 243-320.Google Scholar
  48. [48]
    N. Dershowitz and N. Lindenstrauss, An abstract concurrent machine for rewriting, in: Proceedings of the 2nd ALP, <nt>eds. </nt> H. Kirchner and W. Wechler, Lecture Notes in Computer Science, Vol. 463 (Springer, Berlin, 1990) pp. 318-331.Google Scholar
  49. [49]
    N. Eisinger and H.J. Ohlbach, Deduction systems based on resolution, in: [59], Vol. 1, pp. 184-273.Google Scholar
  50. [50]
    R. Engelmore and T. Morgan, eds., Blackboard Systems (Addison-Wesley, 1988).Google Scholar
  51. [51]
    R.L. Constable et al., Implementing Mathematics in the NuPRL Proof Development System (Prentice-Hall, 1986).Google Scholar
  52. [52]
    M. Fisher, An alternative approach to concurrent theorem proving, in: Parallel Processing for Artificial Intelligence 3, J. Geller, H. Kitano and C.B. Suttner (Elsevier, 1997) pp. 209-230.Google Scholar
  53. [53]
    M. Fitting, First-order Logic and Automated Theorem Proving (Springer, Berlin, 1990).MATHGoogle Scholar
  54. [54]
    B. Fronhöfer and G.Wrightson, <nt>eds. </nt>, Parallelization in Inference Systems, Lecture Notes in Artificial Intelligence, Vol. 590 (Springer, Berlin, 1990).Google Scholar
  55. [55]
    D. Fuchs, Requirement-based cooperative theorem proving, in: Proceedings of the 6th JELIA, J. Dix, L. Fariñas del Cerro and U. Furbach, Lecture Notes in Artificial Intelligence, Vol. 1489 (Springer, Berlin, 1998) pp. 139-153.Google Scholar
  56. [56]
    M. Fuchs, Controlled use of clausal lemmas in connection tableau calculi, J. Symbolic Comput. 29(2) (2000) 299-341.MATHMathSciNetCrossRefGoogle Scholar
  57. [57]
    M. Fuchs and A. Wolf, Cooperation in model elimination: CPTHEO, in: Proceedings of the 15th CADE, <nt>eds. </nt> C. Kirchner and H. Kirchner, Lecture Notes in Artificial Intelligence, Vol. 1421 (Springer, Berlin, 1998) pp. 42-46.Google Scholar
  58. [58]
    M. Fujita, R. Hasegawa, M. Koshimura and H. Fujita, Model generation theorem provers on a parallel inference machine, in: Proceedings of FGCS-92 (1992) pp. 357-375.Google Scholar
  59. [59]
    D.M. Gabbay, C.J. Hogger and J.A. Robinson, Eds, Handbook of Logic in Artificial Intelligence and Logic Programming, Vols. 1 and 2 (Oxford University, 1993).Google Scholar
  60. [60]
    J. Gallier, P. Narendran, D.A. Plaisted, S. Raatz and W. Snyder, Finding canonical rewriting systems equivalent to a finite set of ground equations in polynomial time, J. ACM 40(1) (1993) 1-16.MATHMathSciNetCrossRefGoogle Scholar
  61. [61]
    S.J. Garland and J.V. Guttag, An overview of LP, in: Proceedings of the 3rd RTA, N. Dershowitz, Lecture Notes in Computer Science, Vol. 355 (Springer, Berlin, 1989) pp. 137-151.Google Scholar
  62. [62]
    J.A. Goguen, J. Meseguer, S. Leinwand, T. Winkler and H. Aida, The rewrite rule machine, Technical Report SRI-CSL-89-6, Computer Science Laboratory, SRI International (March 1989).Google Scholar
  63. [63]
    W. Gropp and E. Lusk, User's guide for mpich, a portable implementation of MPI, Technical Report 96/6, MCS Division, Argonne National Laboratory (1996).Google Scholar
  64. [64]
    R. Hasegawa and M. Koshimura, An AND parallelization method for MGTP and its evaluation, in: [67], pp. 194-203.Google Scholar
  65. [65]
    J. Hickey, Fault-tolerant distributed theorem proving, in: Proceedings of the 16th CADE, <nt>ed. </nt> H. Ganzinger, Lecture Notes in Artificial Intelligence, Vol. 1632 (Springer, Berlin, 1999).Google Scholar
  66. [66]
    M. Hitz and E. Kaltofen, eds., Proceedings of the 2nd PASCO (ACM Press, 1997).Google Scholar
  67. [67]
    H. Hong, ed., Proceedings of the 1st PASCO, Lecture Notes Series in Computing, Vol. 5 (World Scientific, 1994).Google Scholar
  68. [68]
    E.V. Huntington, Boolean algebra: A correction, Trans. AMS 35 (1933) 557-558.MATHMathSciNetCrossRefGoogle Scholar
  69. [69]
    E.V. Huntington, New sets of independent postulates for the algebra of logic, Trans. AMS 35 (1933) 274-304.MATHMathSciNetCrossRefGoogle Scholar
  70. [70]
    A. Jindal, R. Overbeek and W. Kabat, Exploitation of parallel processing for implementing highperformance deduction systems, J. Autom. Reason. 8 (1992) 23-38.Google Scholar
  71. [71]
    O. Kaser, S. Pawagi, C.R. Ramakrishnan, I.V. Ramakrishnan and R.C. Sekar, Fast parallel implementations of lazy languages-the EQUALS experience, in: Proceedings of the ACM Conf. on LISP and Functional Programming (1992) pp. 335-344.Google Scholar
  72. [72]
    C. Kirchner, C. Lynch and C. Scharff, Fine-grained concurrent completion, in: Proceedings of the 7th RTA, H. Ganzinger, Lecture Notes in Computer Science, Vol. 1103 (Springer, Berlin, 1996) pp. 3-17.Google Scholar
  73. [73]
    C. Kirchner and P. Viry, Implementing parallel rewriting, in: [54], pp. 123-138.Google Scholar
  74. [74]
    K. Konrad, HOT: a concurrent automated theorem prover based on higher-order tableaux, in: Proceedings of TPHOLs, J. Grundy and M. Newey, Lecture Notes in Computer Science, Vol. 1479 (Springer, Berlin, 1998) pp. 245-262; also: SEKI Report SR-98-03, Fachbereich Informatik, Universität des Saarlandes.Google Scholar
  75. [75]
    S.-J. Lee and D.A. Plaisted, Eliminating duplication with the hyperlinking strategy, J. Autom. Reason. 9 (1992) 25-42.MATHMathSciNetGoogle Scholar
  76. [76]
    R. Letz, J. Schumann, S. Bayerl and W. Bibel, SETHEO: a high performance theorem prover, J. Autom. Reason. 8(2) (1992) 183-212.MATHMathSciNetGoogle Scholar
  77. [77]
    E.L. Lusk and W.W. McCune, Experiments with ROO: a parallel automated deduction system, in: [54], pp. 139-162.Google Scholar
  78. [78]
    E.L. Lusk, W.W. McCune and J. Slaney, ROO: a parallel theorem prover, in: Proceedings of the 11th CADE, <nt>ed. </nt> D. Kapur, Lecture Notes in Artificial Intelligence, Vol. 607 (Springer, Berlin, 1992) pp. 731-734.Google Scholar
  79. [79]
    W.W. McCune, Otter 3.0 reference manual and guide, Technical Report 94/6, MCS Division, Argonne National Laboratory (1994).Google Scholar
  80. [80]
    W.W. McCune, 33 Basic test problems: a practical evaluation of some paramodulation strategies, in: Automated Reasoning and its Applications: Essays in Honor of Larry Wos, <nt>ed. </nt> R. Veroff (MIT Press, 1997) pp. 71-114.Google Scholar
  81. [81]
    W.W. McCune, Solution of the Robbins problem,J. Autom. Reason. 19(3) (1997) 263-276.MATHMathSciNetCrossRefGoogle Scholar
  82. [82]
    M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann and K. Mayr, The model elimination provers SETHEO and E-SETHEO, J. Autom. Reason. 18(2) (1997).Google Scholar
  83. [83]
    R. Moten, Exploiting parallelism in interactive theorem provers, in: Proceedings of TPHOLs, <nt>eds. </nt> J. Grundy and M. Newey, Lecture Notes in Computer Science, Vol. 1479 (Springer, Berlin, 1998) pp. 315-330.Google Scholar
  84. [84]
    D.A. Plaisted, Equational reasoning and term rewriting systems, in: [59], Vol. 1, pp. 273-364.Google Scholar
  85. [85]
    D.A. Plaisted, Mechanical theorem proving, in: Formal Techniques in Artificial Intelligence, <nt>ed. </nt> R.B. Banerji (Elsevier, 1990).Google Scholar
  86. [86]
    C. Scharff, Deduction avec contraintes et simplification dans les theories equationnelles, Ph.D. thesis, Université Henri Poincaré Nancy 1 (September 1999).Google Scholar
  87. [87]
    J. Schumann, Delta: a bottom-up pre-processor for top-down theorem provers, in: Proceedings of the 12th CADE, <nt>ed. </nt> A. Bundy, Lecture Notes in Artificial Intelligence, Vol. 814 (Springer, Berlin, 1994) pp. 774-777.Google Scholar
  88. [88]
    J. Schumann and R. Letz, PARTHEO: a high-performance parallel theorem prover, in: Proceedings of the 10th CADE, <nt>ed. </nt> M.E. Stickel, Lecture Notes in Artificial Intelligence, Vol. 449 (Springer, Berlin, 1990) pp. 28-39. M.P. Bonacina / A taxonomy of parallel strategies for deduction 257Google Scholar
  89. [89]
    R.M. Smullyan, First-Order Logic (Dover, 1995). (Republication of the work first published as Vol. 43 of Series Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin, 1968.)Google Scholar
  90. [90]
    R. Socher-Ambrosius and P. Johann, Deduction Systems (Springer, Berlin, 1997).MATHGoogle Scholar
  91. [91]
    D. Sturgill and A.M. Segre, Nagging: a distributed, adversarial search-pruning technique applied to first-order inference, J. Autom. Reason. 19(3) (1997) 347-376.MATHCrossRefGoogle Scholar
  92. [92]
    G. Sutcliffe, A heterogeneous parallel deduction system, in: Proceedings of the FGCS Workshop on Automated Deduction: Logic Programming and Parallel Computing Approaches, <nt>eds. </nt> R. Hasegawa and M.E. Stickel (1992) pp. 5-13.Google Scholar
  93. [93]
    C.B. Suttner, SPTHEO: a parallel theorem prover, J. Autom. Reason. 18 (1997) 253-258.CrossRefGoogle Scholar
  94. [94]
    C.B. Suttner and J. Schumann, Parallel automated theorem proving, in: Parallel Processing for Artificial Intelligence, <nt>eds. </nt> L. Kanal et al. (Elsevier, 1993).Google Scholar
  95. [95]
    M.T. Vandevoorde and D. Kapur, Distributed Larch prover (DLP): an experiment in parallelizing a rewrite-rule based prover, in: Proceedings of the 7th RTA, ed. H. Ganzinger, Lecture Notes in Computer Science, Vol. 1103 (Springer, Berlin, 1996).Google Scholar
  96. [96]
    C. Weidenbach, B. Gaede and G. Rock, SPASS & FLOTTER, in: Proceedings of the 13th CADE, <nt>eds. </nt> M. McRobbie and J. Slaney, Lecture Notes in Artificial Intelligence, Vol. 1104 (Springer, Berlin, 1996) pp. 141-145.Google Scholar
  97. [97]
    S. Winker, Robbins algebra: conditions that make a near-Boolean algebra Boolean, J. Autom. Reason. 6(4) (1990) 465-489.MATHMathSciNetGoogle Scholar
  98. [98]
    S.Winker, Absorption and idempotency criteria for a problem in near-Boolean algebras, J. Algebra 153(2) (1992) 414-423.MATHMathSciNetCrossRefGoogle Scholar
  99. [99]
    A. Wolf, P-SETHEO: strategy parallelism in automated theorem proving, in: Proceedings of TABLEAUX-98, <nt>ed. </nt> H. de Swart, Lecture Notes in Computer Science, Vol. 1397 (Springer, Berlin, 1998) pp. 320-324.Google Scholar
  100. [100]
    A.Wolf and R. Letz, Strategy parallelismin automated theorem proving, in: Proceedings of FLAIRS-98, (1998).Google Scholar
  101. [101]
    L. Wos, Searching for open questions, Newsletter of the AAR 15 (May 1990).Google Scholar
  102. [102]
    C.-H.Wu and S.-J. Lee, Parallelization of a hyper-linking based theorem prover, J. Autom. Reason. 26(1) (2001) 67-106.MATHCrossRefGoogle Scholar
  103. [103]
    K.A. Yelick and S.J. Garland, A parallel completion procedure for term rewriting systems, in: Proceedings of the 11th CADE, <nt>ed. </nt> D. Kapur, Lecture Notes in Artificial Intelligence, Vol. 607 (Springer, Berlin, 1992) pp. 109-123.Google Scholar
  104. [104]
    H. Zhang, M.P. Bonacina and J. Hsiang, PSATO: a distributed propositional prover and its application to quasigroup problems, J. Symbolic Comput. 21 (1996) 543-560.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Maria Paola Bonacina
    • 1
  1. 1.Department of Computer ScienceThe University of IowaIowa CityUSA E-mail

Personalised recommendations