Pharmaceutical Research

, Volume 11, Issue 10, pp 1385–1390

Formulation and Intestinal Absorption Enhancement Evaluation of Water-in-Oil Microemulsions Incorporating Medium-Chain Glycerides

  • Panayiotis P. Constantinides
  • Jean-Paul Scalart
  • Cindy Lancaster
  • Joseph Marcello
  • Gary Marks
  • Harma Ellens
  • Philip L. Smith
Article

Abstract

We developed self-emulsifying water-in-oil (w/o) microemulsions incorporating medium-chain glycerides and measured their conductance, viscosity, refractive index and particle size. Formulation of Calcein (a water-soluble marker molecule, MW = 623), or SK&F 106760 (a water-soluble RGD peptide, MW = 634) in a w/o microemulsion having a composition of Captex 355/Capmul MCM/Tween 80/Aqueous (65/22/10/3, % w/w), resulted in significant bioavailabil-ity enhancement in rats relative to their aqueous formulations. Upon intraduodenal administration the bioavailability was enhanced from 2% for Calcein in isotonic Tris, pH 7.4 to 45% in the microemulsion and from 0.5% for SK&F 106760 in physiological saline to 27% in the microemulsion formulation. The microemulsion did not induce gross changes in GI mucosa at a dosing volume of 3.3 ml/kg. These results suggest that water-in-oil microemulsion systems may be utilized for enhancement of intestinal drug absorption.

water-in-oil microemulsions medium-chain glycerides enhancer intestinal absorption fibrinogen receptor antagonist 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    W. A. Ritschel. Microemulsions for improved peptide absorption from the gastrointestinal tract. Meth. Find. Exp. Clin. Pharmacol. 13:205–220 (1993).Google Scholar
  2. 2.
    H. N. Bhargava, A. Narurkar, and L. M. Lieb. Using microemulsions for drug delivery. Pharm. Technol. 11(3):46–52, 1987.Google Scholar
  3. 3.
    R. Leung, and Shah, D. O. Microemulsions: An evolving technology for pharmaceutical applications. In: M. Rosoff (ed). Controlled Release of Drugs: Polymers and Aggregate Systems. VCH Publishers, New York (1989) pp. 185–215.Google Scholar
  4. 4.
    D. W. Osborne, C. A. Middleton, and R. L. Rogers. Alcoholfree microemulsions. J. Dispersion Sci. Technol. 9:415–423 (1988).Google Scholar
  5. 5.
    E. C. Swenson and W. J. Curatolo. Intestinal permeability enhancement for proteins, peptides and other polar drugs: mechanisms and potential toxicity. Adv. Drug Deliv. Rev. 8:39–92, (1992).Google Scholar
  6. 6.
    P. P. Constantinides. Water-in-oil Microemulsions. PCT Publication WO 93/02664, 18 February 1993.Google Scholar
  7. 7.
    S. Muranishi. Absorption Enhancers. Crit. Rev. Ther. Drug Carrier Syst. 7:1–33 (1990).Google Scholar
  8. 8.
    E. J. Van Hoogdalem, M. A. Hardens, A. G. De Boer, and D. D. Breimer. Absorption enhancement of rectally infused cefoxitin sodium by medium-chain fatty acids in conscious rats: Concentration-Effect relationship. Pharm. Res. 5:453–456, (1988).Google Scholar
  9. 9.
    K. Nishimura, Y. Nozaki, A. Yoshimi, S. Nakamura, M. Kitagawa, N. Kakeya, and K. Kitao. Studies on the promoting effects of carboxylic acid derivatives on the rectal absorption of beta-lactam antibiotics in rats. Chem. Pharm. Bull. 33:282–291 (1985).Google Scholar
  10. 10.
    E. J. Van Hoogdalem, A. G. De Boer, and D. D. Breimer. Rectal absorption enhancement of rate-controlled delivered ampicillin sodium by sodium decanoate in conscious rats. Pharm. Weekbl. Sci. 10:76–79 (1988).Google Scholar
  11. 11.
    M. Sekine, K. Sasahara, T. Kojima, K. Hasegawa, and R. Okada. Improvement of bioavailability of poorly intestinally absorbed drugs from medium-chain glyceride base: Enhancement of the rectal absorption of cefmetazole sodium in rabbits. Chem. Pharm. Bull. 32:4189–4192 (1984).Google Scholar
  12. 12.
    M. Sekine, K. Sasahara, T. Kojima, K. Hasegawa, R. Okada, and S. Awazu. Improvement of bioavailability of poorly absorbed drugs. I. Effect of medium-chain glyceride base on the rectal absorption of Cefmetazole sodium in rats. J. Pharmacobio-Dyn. 7:856–863 (1984).Google Scholar
  13. 13.
    M. Sekine, K. Sasahara, R. Okada, and S. Awazu. Improvement of bioavailability of poorly absorbed drugs. IV. Mechanism of the promoting effect of medium-chain glyceride on the rectal absorption of water soluble drugs. J. Pharmacobio-Dyn. 8:645–652 (1985).Google Scholar
  14. 14.
    G. Beskid, J. Unowsky, C. R. Behl, J. Siebelist, J. L. Tossounian, C. M. McGarry, N. H. Shah, and R. Cleeland. Enteral, oral and rectal absorption of Ceftriaxone using glyceride enhancers. Chemother. 34:77–84 (1988).Google Scholar
  15. 15.
    K. J. Palin, A. J. Phillips, and A. Ning. The oral absorption of Cefoxitin from oil and emulsion vesicles in rats. Int. J. Pharm. 33:99–104 (1986).Google Scholar
  16. 16.
    B. Hauser, A. Meinzer, U. Posanski, and F. Richter. Cyclosporin Emulsion Composition. GB Patent Application 2, 222, 770, 21 March, 1990.Google Scholar
  17. 17.
    J. Samanen, F. Ali, T. Romoff, R. Calvo, E. Sorenson, J. Vasko, B. Storer, D. Berry, D. Bennett, M. Strohsacker, D. Powers, J. Stadel, and A. Nichols. Development of a small RGD peptide fibrinogen receptor antagonist with potent antiaggregatory activity in vitro. Med. Chem. 34:3114–3125 (1991).Google Scholar
  18. 18.
    G. R. Rhodes and V. K. Boppana. High performance liquid chromatographic analysis of arginine-containing peptides in biological fluids by means of a selective post-column reaction with fluorescence detection. J. Chromatography 444:123–131 (1988).Google Scholar
  19. 19.
    R. A. Myers and V. J. Stella. Systemic bioavailability of penclomedine (NSC-338720) from oil-in-water emulsions administered intraduodenally to rats. Int. J. Pharm. 78:217–226 (1992).Google Scholar
  20. 20.
    T. T. Kararli, T. E. Needham, M. Griffin, G. Schoenhard, L. J. Ferro, and L. Alcorn. Oral delivery of a renin inhibitor compound using emulsion formulations. Pharm. Res. 9(7):888–893 (1992).Google Scholar
  21. 21.
    A. B. Steffans. A method for frequent sampling of blood and continuous infusion of fluids in the rat without disturbing the animal. Physiol. Behav. 4:833–836 (1969).Google Scholar
  22. 22.
    V. H. L. Lee, A. Yamamoto, and U. B. Kompella. Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit. Rev. Ther. Drug Carrier Syst. 8(2):91–192 (1991).Google Scholar
  23. 23.
    P.-Y. Yeh, P. L. Smith, and H. Ellens. Effect of medium-chain glycerides on physiology of intestinal epithelium in vitro. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 20:176–177 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Panayiotis P. Constantinides
    • 1
  • Jean-Paul Scalart
    • 2
  • Cindy Lancaster
    • 1
  • Joseph Marcello
    • 1
  • Gary Marks
    • 1
  • Harma Ellens
    • 1
  • Philip L. Smith
    • 1
  1. 1.Department of Drug Delivery, Pharmaceutical TechnologiesSmithKline Beecham PharmaceuticalsKing of PrussiaPennsylvania
  2. 2.School of PharmacyUniversity of RennesFrance
  3. 3.Drug Delivery DepartmentSmithKline Beecham PharmaceuticalsKing of PrussiaPennsylvania

Personalised recommendations