Catalysis Letters

, Volume 44, Issue 1–2, pp 83–87

The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation

  • G.R. Bamwenda
  • S. Tsubota
  • T. Nakamura
  • M. Haruta
Article

Abstract

The influence of the preparation methods on the catalytic activity for CO oxidation was markedly large for Au-TiO2 and negligible for Pt-TiO2 catalysts. Platinum and gold were deposited on TiO2 by deposition-precipitation (DP), photodeposition (FD) and impregnation (IMP). The DP method gave the most active catalysts for both Pt and Au. Gold catalysts prepared by DP were active at temperatures below 273 K and showed a much greater activity than Pt catalysts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F.G.Dwyer,Catal.Rev. 6 (1972) 261.Google Scholar
  2. [2]
    A. Bielanski and J. Haber: Oxygen in Catalysis (Dekker, NewYork, 1991) p. 211.Google Scholar
  3. [3]
    G.I. Golodets and J.R.H. Ross: Heterogenous Catalytic Reactions Involving Molecular Oxygen, Studies in Surface Science and Catalysis, Vol. 15 (Elservier, Amsterdam, 1983) p. 280.Google Scholar
  4. [4]
    D. Bocker and R.D. Gonzalez: Closed-Cycle, Frequency-Stable CO2 Laser Technology, NASA Conf. Publ. 2456, eds. G.E. Batter, I.M. Miller, G.M. Wood Jr. and D.V. Willets (NASASci. Techn. Inf. Branch, 1987) p. 85.Google Scholar
  5. [5]
    M. Sheintuch, J. Schmidt, Y. Lectham and G. Yahav, Appl. Catal. 49 (1989).Google Scholar
  6. [6]
    D.S. Stark and M.R.Harris, J. Phys. E 16 (1983) 492.Google Scholar
  7. [7]
    G.Croft and M.J. Fuller, Nature 269 (1977) 585.Google Scholar
  8. [8]
    G.C. Bond, L.R. Molloy and M.J. Fuller, J. Chem. Soc. Chem. Commun. (1975) 796.Google Scholar
  9. [9]
    S.D. Gardner, G.B. Hoflund, D.R. Schryer and B.T. Upchurch, J. Phys. Chem. 95 (1991) 835.Google Scholar
  10. [10]
    D.R. Schryer, B.T. Upchurch, B.D. Sidney, K.G. Brown, G.B. Hoflund and R.K.Herz, J.Catal. 130 (1991) 314.Google Scholar
  11. [11]
    D.R. Schryer, B.T. Upchurch, J.D.V. Norman, K.G. Brown and J. Schryer, J. Catal. 122 (1990) 193.Google Scholar
  12. [12]
    J.E. Drawdy, G.B. Hoflund, S.D. Gardner and E. Yngvadottir, Surf. Interf. Anal. 16 (1990) 369.Google Scholar
  13. [13]
    P.A. Sermon, V.A. Self and E.P.S. Barrett, J. Chem. Soc. Chem. Commun. (1990) 1572.Google Scholar
  14. [14]
    H.G. Lintz, C.F. Sampson and N. Gudde: Proc. 2nd Int. Conf. Spillover, Leipzig, 12 June 1989.Google Scholar
  15. [15]
    T. Dawood, J.R. Richmond and B.W. Riley: Low-TemperatureCO-OxidationCatalysts for Long-Life CO2 Lasers, NASAConf. Publ. 3076 (NASASci. Tech. Inf.,1990) p. 157.Google Scholar
  16. [16]
    M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J.Genet and B.Delmon, J.Catal. 144 (1993) 175.Google Scholar
  17. [17]
    D. Cunningham, S. Tsubota, N. Kamijo and M. Haruta, Res. Chem. Interm. 19 (1993) 1.Google Scholar
  18. [18]
    S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda and Y. Nakahara: Preparation of Catalysts, Vol. V, eds. G. Poncelet, P.A. Jacobs, P. Grange and B. Delmon (Elsevier, Amsterdam, 1991) p. 695.Google Scholar
  19. [19]
    M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal. 115 (1989) 301.Google Scholar
  20. [20]
    S.D. Lin, M. Bollinger and M.A. Vannice, Catal. Lett. 17 (1993) 245.Google Scholar
  21. [21]
    C. Sze, E. Gulari and B.G. Demczyk: Materials Research Society Proceedings, Vol. 286, eds. S. Komarneni, J.C. Parker and G.J. Thomas (Boston, 1993) p. 143.Google Scholar
  22. [22]
    S. Takamatsu, M. Ishii, M. Kinbara, T. Kikuta and T. Fukushima, Shokubai (Catalysis) 34 (1992) 126.Google Scholar
  23. [23]
    A.K. Tripathi, N.M. Gupta, U.K. Catterji and R.M. Iyer, Ind. J. Technol. 30 (1992) 107.Google Scholar
  24. [24]
    A. Knell, P. Barnickel, A. Baiker and A. Wokaun, J. Catal. 137 (1992) 306.Google Scholar
  25. [25]
    S.K. Tanielyan and R.L.Augustine, Appl.Catal. 85 (1992) 73.Google Scholar
  26. [26]
    T. Aida, H.G. Ahn and H. Niiyama: Catalytic Science and Technology, Vol. 1, eds. S. Yoshida, N. Takezawa and T. Ono (Kodansha, Tokyo, 1991) p. 297.Google Scholar
  27. [27]
    S.D.Gardner and G.B.Hoflund, Langmuir (1991) 74.Google Scholar
  28. [28]
    S.D. Gardner, G.B. Hoflund, B.T. Upchurch, D.R. Schryer, E.J.Kieln and J. Schryer, J. Catal. 129 (1991) 114.Google Scholar
  29. [29]
    B.Kraeutler and A.J. Bard, J.Am.Chem. Soc. 100 (1978) 5985.Google Scholar
  30. [30]
    T. Matsushima, Surf. Sci. 127 (1983) 403; Hyomen (Surface) 23 (1985) 259.Google Scholar
  31. [31]
    Y. Onishi, Bull.Chem. Soc. Jpn. 44 (1971) 1460.Google Scholar
  32. [32]
    F. Boccuzzi, A. Chiorino, S. Tsubota and M. Haruta, J. Phys. Chem. 100 (1996) 3625.Google Scholar
  33. [33]
    G.R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, J. Photochem. Photobiol. A 89 (1995) 177.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • G.R. Bamwenda
  • S. Tsubota
  • T. Nakamura
  • M. Haruta

There are no affiliations available

Personalised recommendations