A model and a first analysis of distributed‐search contraction‐based strategies

  • Maria Paola Bonacina
Article

Abstract

While various approaches to parallel theorem proving have been proposed, their usefulness is evaluated only empirically. This research is a contribution towards the goal of machine‐independent analysis of theorem‐proving strategies. This paper considers clausal contraction‐based strategies and their parallelization by distributed search, with subdivision of the search space and propagation of clauses by message‐passing (e.g., à la Clause‐Diffusion). A model for the representation of the parallel searches produced by such strategies is presented, and the bounded‐search‐spaces approach to the measurement of search complexity in infinite search spaces is extended to distributed search. This involves capturing both its advantages, e.g., the subdivision of work, and disadvantages, e.g., the cost of communication, in terms of search space. These tools are applied to compare the evolution of the search space of a contraction‐based strategy with that of its parallelization in the above sense.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Anantharaman and M.P. Bonacina, An application of automated equational reasoning to many-valued logic, in: Proc. of CTRS-90, Lecture Notes in Computer Science, Vol. 516, eds. M. Okada and S. Kaplan (Springer-Verlag, 1991) pp. 156-161.Google Scholar
  2. [2]
    S. Anantharaman and J. Hsiang, Automated proofs of the Moufang identities in alternative rings, J. Automat. Reason. 6(1) (1990) 76-109.MathSciNetCrossRefGoogle Scholar
  3. [3]
    M.J. Atallah, F. Dehne, R. Miller, A. Rau-Chaplin and J.J. Tsay, Multisearch techniques: parallel data structures on a mesh-connected computer, J. Parallel Distrib. Comput. 20(1) (1994) 1-13.MATHCrossRefGoogle Scholar
  4. [4]
    M.J. Atallah and A. Fabri, On the multisearch problem for hypercubes, Comput. Geom. Theory Appl. 5 (1996).Google Scholar
  5. [5]
    J. Avenhaus, J. Denzinger and M. Fuchs, DISCOUNT: a system for distributed equational deduction, in: Proc. of RTA-95, Lecture Notes in Computer Science, Vol. 914, ed. J. Hsiang (Springer, 1995).Google Scholar
  6. [6]
    L. Bachmair and N. Dershowitz, Critical pair criteria for completion, J. Symbolic Comput. 6(1) (1988) 1-18.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    L. Bachmair and H. Ganzinger, Non-clausal resolution and superposition with selection and redundancy criteria, in: Proc. of LPAR-92, Lecture Notes in Artificial Intelligence, Vol. 624, ed. A. Voronkov (Springer-Verlag, 1992) pp. 273-284.Google Scholar
  8. [8]
    L. Bachmair and H. Ganzinger, A theory of resolution, Technical Report MPI-I-97-2-005, Max Planck Institut für Informatik, 1997. To appear in: Handbook of Automated Reasoning, eds. J.A. Robinson and A. Voronkov (Elsevier Science).Google Scholar
  9. [9]
    L. Bachmair, H. Ganzinger, C. Lynch and W. Snyder, Basic paramodulation, Inform. and Comput. 121(2) (1995) 172-192.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Bäumker, W. Dittrich and F. Meyer auf der Heide, Truly efficient parallel algorithms: 1-optimal multisearch for and extension of the BSP model, Technical Report tr-rsfb-96-008, Department of Mathematics and Computer Science, University of Paderborn (1996). See also Proc. of the 3rd European Symp. on Algorithms, Lecture Notes in Computer Science, Vol. 979 (1995) pp. 17–30.Google Scholar
  11. [11]
    A. Bäumker, W. Dittrich and A. Pietracaprina, The complexity of parallel multisearch on coarse grained machines, Algoritmica. Special Issue on Coarse Grained Parallel Algorithms (1998).Google Scholar
  12. [12]
    M.P. Bonacina, On the reconstruction of proofs in distributed theorem proving: a modified Clause-Diffusion method, J. Symbolic Comput. 21 (1996) 507-522.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    M.P. Bonacina, Experiments with subdivision of search in distributed theorem proving, in: Proc. of PASCO-97, eds. M. Hitz and E. Kaltofen (ACM Press, 1997) pp. 88-100.Google Scholar
  14. [14]
    M.P. Bonacina, Mechanical proofs of the Levi commutator problem, in: Notes of the CADE-15 Workshop on Problem Solving Methodologies with Automated Deduction, eds. P. Baumgartner et al. (1998) pp. 1-10.Google Scholar
  15. [15]
    M.P. Bonacina, Ten years of parallel theorem proving: a perspective, in: Notes of the FLoC-99 Workshop on Strategies in Automated Deduction, eds. B. Gramlich, H. Kirchner and F. Pfenning (1999) pp. 3-15. Full version: A taxonomy of parallel strategies for deduction, Technical Report 99-07, Department of Computer Science, University of Iowa (May 1999).Google Scholar
  16. [16]
    M.P. Bonacina and J. Hsiang, On subsumption in distributed derivations, J. Automat. Reason. 12 (1994) 225-240.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    M.P. Bonacina and J. Hsiang, Parallelization of deduction strategies: an analytical study, J. Automat. Reason. 13 (1994) 1-33.MathSciNetCrossRefGoogle Scholar
  18. [18]
    M.P. Bonacina and J. Hsiang, The Clause-Diffusion methodology for distributed deduction, Fund. Inform. 24 (1995) 177-207.MATHMathSciNetGoogle Scholar
  19. [19]
    M.P. Bonacina and J. Hsiang, Distributed deduction by Clause-Diffusion: distributed contraction and the Aquarius prover, J. Symbolic Comput. 19 (1995) 245-267.MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    M.P. Bonacina and J. Hsiang, Towards a foundation of completion procedures as semidecision procedures, Theor. Comput. Sci. 146 (1995) 199-242.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    M.P. Bonacina and J. Hsiang, On the modelling of search in theorem proving — towards a theory of strategy analysis, Inform. and Comput. 147 (1998) 171-208.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Bündgen, M. Göbel and W. Küchlin, A master-slave approach to parallel term-rewriting on a hierarchical multiprocessor, in: Proc. of the 4th DISCO, Lecture Notes in Computer Science, Vol. 1128, eds. J. Calmet and C. Limongelli (Springer, 1996) pp. 184-194.Google Scholar
  23. [23]
    R. Bündgen, M. Göbel and W. Küchlin, Strategy-compliant multi-threaded term completion, J. Symbolic Comput. 21 (1996) 475-506.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    J. Denzinger and S. Schulz, Recording and analyzing knowledge-based distributed deduction processes, J. Symbolic Comput. 21 (1996) 523-541.MATHCrossRefGoogle Scholar
  25. [25]
    N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in: Handbook of Theoretical Computer Science, Vol. B, ed. J. van Leeuwen (Elsevier, 1990) pp. 243-320.Google Scholar
  26. [26]
    B. Fronhöfer and G. Wrightson, eds., Parallelization in Inference Systems, Lecture Notes in Artificial Intelligence, Vol. 590 (Springer-Verlag, 1990).Google Scholar
  27. [27]
    D. Fuchs, Requirement-based cooperative theorem proving, in: Proc. of JELIA-98, Lecture Notes in Artificial Intelligence, Vol. 1489, eds. J. Dix, L. Fariñas del Cerro and U. Furbach (Springer, 1998) pp. 139-153.Google Scholar
  28. [28]
    M. Fuchs and A. Wolf, Cooperation in model elimination: CPTHEO, in: Proc. of CADE-15, Lecture Notes in Artificial Intelligence, Vol. 1421, eds. C. Kirchner and H. Kirchner (Springer, 1998) pp. 42-46.Google Scholar
  29. [29]
    W. Gropp and E. Lusk, User's guide for mpich, a portable implementation of MPI, Technical Report 96/6, MCS Division, Argonne National Laboratory (1996).Google Scholar
  30. [30]
    J. Hsiang and M. Rusinowitch, On word problems in equational theories, in: Proc. of the 14th ICALP, Lecture Notes in Computer Science, Vol. 267, ed. Th. Ottman (Springer-Verlag, 1987) pp. 54-71.Google Scholar
  31. [31]
    J. Hsiang and M. Rusinowitch, Proving refutational completeness of theorem proving strategies: the transfinite semantic tree method, J. ACM 38(3) (1991) 559-587.MATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    D. Kapur and H. Zhang, A case study of the completion procedure: proving ring commutativity problems, in: Computational Logic — Essays in Honor of Alan Robinson, eds. J.-L. Lassez and G. Plotkin (MIT Press, 1991) pp. 360-394.Google Scholar
  33. [33]
    C. Kirchner, C. Lynch and C. Scharff, Fine-grained concurrent completion, in: Proc. of RTA-96, Lecture Notes in Computer Science, Vol. 1103, ed. H. Ganzinger (Springer, 1996) pp. 3-17.Google Scholar
  34. [34]
    R. Kowalski, Search strategies for theorem proving, in: Machine Intelligence, Vol. 5, eds. B. Meltzer and D. Michie (Edinburgh University Press, 1969) pp. 181-201.Google Scholar
  35. [35]
    A. Leitsch, The Resolution Calculus (Springer, 1997).Google Scholar
  36. [36]
    D.W. Loveland, Automated Theorem Proving: A Logical Basis (North-Holland, 1978).Google Scholar
  37. [37]
    W.W. McCune, Otter 3.0 reference manual and guide, Technical Report 94/6, MCS Division, Argonne National Laboratory (1994).Google Scholar
  38. [38]
    W.W. McCune, 33 Basic test problems: a practical evaluation of some paramodulation strategies, in: Automated Reasoning and its Applications: Essays in Honor of Larry Wos, ed. R. Veroff (MIT Press, 1997) pp. 71-114.Google Scholar
  39. [39]
    W.W. McCune, Solution of the Robbins problem, J. Automat. Reason. 19(3) (1997) 263-276.MATHMathSciNetCrossRefGoogle Scholar
  40. [40]
    R. Niewenhuis, J.M. Rivero and M.A. Vallejo, The Barcelona prover, J. Automat. Reason. 18(2) (1997).Google Scholar
  41. [41]
    D.A. Plaisted, Mechanical theorem proving, in: Formal Techniques in Artificial Intelligence, ed. R.B. Banerji (Elsevier, 1990).Google Scholar
  42. [42]
    D.A. Plaisted, Equational reasoning and term rewriting systems, in: Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 1, eds. D. Gabbay et al. (Oxford University Press, 1993) pp. 274-367.Google Scholar
  43. [43]
    D.A. Plaisted and Y. Zhu, The Efficiency of Theorem Proving Strategies (Friedr. Vieweg & Sohns, 1997).Google Scholar
  44. [44]
    C.B. Suttner and J. Schumann, Parallel automated theorem proving, in: Parallel Processing for Artificial Intelligence, eds. L. Kanal et al. (Elsevier, 1994).Google Scholar
  45. [45]
    T. Tammet, Gandalf, J. Automat. Reason. 18(2) (1997) 199-204.CrossRefGoogle Scholar
  46. [46]
    A. Urquhart, The complexity of propositional proofs, Bull. Symbolic Logic 1 (1995) 425-467.MATHMathSciNetCrossRefGoogle Scholar
  47. [47]
    C. Weidenbach, B. Gaede and G. Rock, SPASS & FLOTTER, in: Proc. of CADE-13, Lecture Notes in Artificial Intelligence, Vol. 1104, eds. M. McRobbie and J. Slaney (Springer, 1996) pp. 141-145.Google Scholar
  48. [48]
    A. Wolf and R. Letz, Strategy parallelism in automated theorem proving, in: Proc. of FLAIRS-98 (1998).Google Scholar
  49. [49]
    H. Zhang, Herky: high performance rewriting in RRL, in: Proc. of CADE-11, Lecture Notes in Artificial Intelligence, Vol. 607, ed. D. Kapur (Springer-Verlag, 1992) pp. 696-700.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Maria Paola Bonacina
    • 1
  1. 1.Department of Computer ScienceUniversity of IowaIowa CityUSA

Personalised recommendations