Boundary-Layer Meteorology

, Volume 99, Issue 3, pp 349–378 | Cite as

Improvement Of The Mellor–Yamada Turbulence Closure Model Based On Large-Eddy Simulation Data

  • Mikio Nakanish


On the basis of data constructed with large-eddy simulation (LES), an attempt is made to improve the Mellor–Yamada (M–Y) turbulence closure model. Firstly, stably-stratified and convective planetary boundary layers without moisture are simulated by a LES model to obtain a database for the improvement. Secondly, based on the LES data, closure constants are re-evaluated and a new diagnostic equation for the master length scale L is proposed. The new equation is characterized by allowing L in the surface layer to vary with stability instead of constant kz, where k is the von Kármán constant, and z is height.

The non-dimensional eddy-diffusivity coefficients calculated from the modifiedM–Y model are in satisfactory agreement with those from the LES data. It isfound that the modified M–Y model improves the original one largely, and thatthe improvement is achieved by considering buoyancy effects on the pressurecovariances andby using the newly proposed equation for L.

Closure constant Eddy-diffusivity coefficient Large-eddy simulation Length scale Level 3 model Turbulence closure model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrén, A.: 1991, ‘A TKE-Dissipation Model for the Atmospheric Boundary Layer’ Boundary-Layer Meteorol. 56, 207-221.Google Scholar
  2. Andrén, A.: 1995, ‘The Structure of Stably Stratified Atmospheric Boundary Layers: A Large-Eddy Simulation Study’ Quart. J. Roy. Meteorol. Soc. 121, 961-985.Google Scholar
  3. Andrén, A. andMoeng, C.-H.: 1993, ‘Single-Point Closures in a Neutrally Stratified Boundary Layer’ J. Atmos. Sci. 50, 3366-3379.Google Scholar
  4. Beljaars, A. C. M. andHoltslag, A. A. M.: 1991, ‘Flux Parameterization over Land Surfaces for Atmospheric Models’ J. Appl. Meteorol. 30, 327-341.Google Scholar
  5. Busch, N. E. andLarsen, S. E.: 1972, ‘Spectra of Turbulence in the Atmospheric Surface Layer’ in Risø Report No. 256, pp. 187-207.Google Scholar
  6. Businger, J. A.,Wyngaard, J. C.,Izumi, Y., andBradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’ J. Atmos. Sci. 28, 181-189.Google Scholar
  7. Canuto, V. M. andMinotti, F.: 1993, ‘Stratified Turbulence in the Atmosphere and Oceans: A New Subgrid Model’ J. Atmos. Sci. 50, 1925-1935.Google Scholar
  8. Deardorff, J. W.: 1972, ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’ J. Atmos. Sci. 29, 91-115.Google Scholar
  9. Denby, B.: 1999, ‘Second-Order Modelling of Turbulence in Katabatic Flows’ Boundary-Layer Meteorol. 92, 67-100.Google Scholar
  10. Dubrulle, B. andNiino, H.: 1992, ‘On a Diagnostic Equation for a Turbulent Length Scale’ in preprint, Autumn Conference of Japan Meteorological Society, Sapporo, 7-9 October 1992, Japan Meteorological Society, pp. 214-214 (in Japanese).Google Scholar
  11. Gambo, K.: 1978, ‘Notes on the Turbulence Closure Model for Atmospheric Boundary Layers’ J. Meteorol. Soc. Japan 56, 466-480.Google Scholar
  12. Gerrity, J. P.,Black, T. L., andTreadon, R. E.: 1994, ‘The Numerical Solution of the Mellor-Yamada Level 2.5 Turbulent Kinetic Energy Equation in the EtaModel’ Mon. Wea. Rev. 122, 1640-1646.Google Scholar
  13. Helfand, H. M. andLabraga, J. C.: 1988, ‘Design of a Nonsingular Level 2.5 Second-Order Closure Model for the Prediction of Atmospheric Turbulence’ J. Atmos. Sci. 45, 113-132.Google Scholar
  14. Kantha, L. H. andClayson, C. A.: 1994, ‘An Improved Mixed Layer Model for Geophysical Applications’ J. Geophys. Res. 99(C12), 25,235-25,266.Google Scholar
  15. Lewellen, W. S. andTeske, M. E.: 1973, ‘Prediction of the Monin-Obukhov Similarity Functions from an Invariant Model of Turbulence’ J. Atmos. Sci. 30, 1340-1345.Google Scholar
  16. Mellor, G. L.: 1973, ‘Analytic Prediction of the Properties of Stratified Planetary Surface Layers’ J. Atmos. Sci. 30, 1061-1069.Google Scholar
  17. Mellor, G. L. andYamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’ J. Atmos. Sci. 31, 1791-1806.Google Scholar
  18. Mellor, G. L. andYamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’ Rev. Geophys. Space Phys. 20, 851-875.Google Scholar
  19. Miyakoda, K.,Gordon, T.,Caverly, R.,Stern, W.,Sirutis, J., andBourke, W.: 1983, ‘Simulation of a Blocking Event in January 1977’ Mon. Wea. Rev. 111, 846-869.Google Scholar
  20. Moeng, C.-H. andSullivan, P. P.: 1994, ‘A Comparison of Shear-and Buoyancy-Driven Planetary Boundary Layer Flows’ J. Atmos. Sci. 51, 999-1022.Google Scholar
  21. Moeng, C.-H. andWyngaard, J. C.: 1986, ‘An Analysis of Closures for Pressure-Scalar Covariances in the Convective Boundary Layer’ J. Atmos. Sci. 43, 2499-2513.Google Scholar
  22. Moeng, C.-H. andWyngaard, J. C.: 1988, ‘Spectral Analysis of Large-Eddy Simulations of the Convective Boundary Layer’ J. Atmos. Sci. 45, 3573-3587.Google Scholar
  23. Moeng, C.-H. andWyngaard, J. C.: 1989, ‘Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modeling’ J. Atmos. Sci. 46, 2311-2330.Google Scholar
  24. Nakanishi, M.: 2000, ‘Large-Eddy Simulation of Radiation Fog’ Boundary-Layer Meteorol. 94, 461-493.Google Scholar
  25. Niino, H.: 1990, ‘On the Prognostic Equation for the Turbulent Master Length Scale in a Turbulence Closure Model’ in preprint, Spring Conference of Japan Meteorological Society, Tokyo, 23-25 May 1990, Japan Meteorological Society, pp. 215-215 (in Japanese).`Google Scholar
  26. Numerical Prediction Division of Japan Meteorological Agency: 1997, Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Agency, Japan Meteorological Agency, Tokyo, 126 pp.Google Scholar
  27. Schumann, U.: 1977, ‘Realizability of Reynolds Stress Turbulence Models’ Phys. Fluids 20, 721-725.Google Scholar
  28. Sullivan, P. P.,McWilliams, J. C., andMoeng, C.-H.: 1994, ‘A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows’ Boundary-Layer Meteorol. 71, 247-276.Google Scholar
  29. Sun, W.-Y. andOgura, Y.: 1980, ‘Modeling the Evolution of the Convective Planetary Boundary Layer’ J. Atmos. Sci. 37, 1558-1572.Google Scholar
  30. Therry, G. andLacarrère, P.: 1983, ‘Improving the Eddy Kinetic Energy Model for Planetary Boundary Layer Description’ Boundary-Layer Meteorol. 25, 63-88.Google Scholar
  31. Yaglom, A. M.: 1977, ‘Comments on Wind and Temperature Flux-Profile Relationships’ Boundary-Layer Meteorol. 11, 89-102.Google Scholar
  32. Yamada, T.: 1977, ‘A Numerical Experiment on Pollutant Dispersion in a Horizontally-Homogeneous Atmospheric Boundary Layer’ Atmos. Environ. 11, 1015-1024.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Mikio Nakanish
    • 1
  1. 1.Japan Weather AssociationToshima, TokyoJapan

Personalised recommendations