Advertisement

Pharmaceutical Research

, Volume 10, Issue 6, pp 871–878 | Cite as

Deposition Patterns of Aerosolized Drugs Within Human Lungs: Effects of Ventilatory Parameters

  • Ted B. Martonen
  • Ira M. Katz
Article

Abstract

A mathematical model for inhaled aerosolized drugs is validated by comparisons of predicted particle deposition values with experimental data from adult subject inhalation exposure tests. The model is subsequently used to study the effects of ventilatory parameters on particle deposition patterns within the human lung. By altering breathing profiles, deposition values can be affected regarding quantity delivered and spatial location. Increased tidal volumes and breath-holding times increase deposition in the pulmonary region, while increased inspiratory flow rates increase deposition in the tracheobronchial region. Based upon fluid dynamics considerations (Reynolds numbers), an original method of partitioning the lung is also presented. The model has implications with regard to aerosol therapy, indicating that the efficacies of inhaled pharmacological drugs in the prophylaxis and treatment of airway diseases can be improved by regulating breathing profiles to deposit particles selectively at prescribed sites within the lung.

inhaled drugs particle deposition mathematical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. E. Ruffin, M. B. Dolovich, R. K. Wolff, and M. T. Newhouse. The effects of preferential deposition of histamine in the human airway. Am. Rev. Resp. Dis. 117:485–492 (1978).Google Scholar
  2. 2.
    M. T. Newhouse and R. E. Ruffin. Deposition and fate of inhaled aerosols. Chest 73S:936–942 (1978).Google Scholar
  3. 3.
    M. J. Hensley, C. F. O'Cain, E. R. McFadden, Jr., and R. H. Ingram, Jr. Distribution of bronchodilation in normal subjects, Beta agonist versus atropine. J. Appl. Physiol. 45:778–782 (1978).Google Scholar
  4. 4.
    P. J. Barnes, C. B. Basbaum, J. A. Nadel, and J. M. Roberts. Localization of b-adrenoreceptors in mammalian lung by light microscopic autoradiography. Nature 299:444–447 (1978).Google Scholar
  5. 5.
    R. E. Ruffin, M. B. Dolovich, F. A. Oldenberg, Jr., and M. T. Newhouse. The preferential deposition of inhaled isoproterenol and propranolol in asthmatic patients. Chest 180S:904S–906S (1981).Google Scholar
  6. 6.
    M. M. Clay, D. Pavia, and S. W. Clarke. Effect of aerosol particle size on bronchodilation with nebulized terbutaline in asthmatic subjects. Thorax 41:364–368 (1986).Google Scholar
  7. 7.
    D. M. Mitchell, M. A. Solomon, S. E. J. Tolfree, M. Short, and S. G. Spiro. Effect of particle size of bronchodilator aerosols on lung distribution and pulmonary function in patients with chronic asthma. Thorax 42:457–461 (1987).Google Scholar
  8. 8.
    J. A. Karlsson, G. Sant'Ambrogio, and J. Widdicombe. Afferent neural pathways in cough and reflex bronchoconstriction. J. Appl. Physiol. 65:1007–1023 (1988).Google Scholar
  9. 9.
    G. Persson and J. E. Wiren. The bronchodilator response from inhaled terbutaline is influenced by the mass of small particles, a study on a dry powder inhaler (TurbuhalerR). Eur. Resp. J. 2:253–256 (1989).Google Scholar
  10. 10.
    G. C. Smaldone, L. Walser, R. J. Perry, J. S. Ilowite, W. D. Bennet, and M. Greco. Generation and administration of aerosols for medical and physiological research studies. J. Aerosol Med. 2:81–87 (1989).Google Scholar
  11. 11.
    P. J. Anderson, E. Garshick, J. D. Blanchard, H. A. Feldman, and J. D. Brain. Intersubject variability in particle deposition does not explain variability in responsiveness to methacoline. Am. Rev. Resp. Dis. 144:649–654 (1991).Google Scholar
  12. 12.
    H. L. Ashworth, C. G. Wilson, E. E. Sims, P. K. Wotton, and J. G. Hardy. Delivery of propellant soluble drug from a metered dose inhaler. Thorax 46:245–247 (1991).Google Scholar
  13. 13.
    J. Mortensen, S. Groth, P. Lange, and F. Hermansen. Effect of terbutaline on mucociliary clearance in asthmatic and healthy subjects after inhalation from a pressurized inhaler and a dry powder inhaler. Thorax 46:817–823 (1991).Google Scholar
  14. 14.
    S. P. Newman, A. W. B. Weisz, N. Talee, and S. W. Clarke. Improvement of drug delivery with a breath actuated pressurized aerosol for patients with poor inhaler technique. Thorax 46:712–716 (1991).Google Scholar
  15. 15.
    P. Vidgren, M. Vidgren, K. Laurikainen, T. Pietil, M. Silvasti, and P. Paronen. In vitro deposition and clinical efficacy of two sodium cromoglycate inhalation powders. Int. J. Clin. Pharm. 29:108–112 (1991).Google Scholar
  16. 16.
    T. B. Martonen. Aerosol therapy implications of particle deposition patterns in simulated human airways. J. Aerosol Med. 4:25–40 (1991).Google Scholar
  17. 17.
    M. Vidgren, M. Silvasti, P. Vidgren, K. Laurikainen, H. Lehti, and P. Paronen. Physical properties and clinical efficacy of two sodium cromoglycate inhalation aerosol preparations. Acta Pharm. Nord. 3:1–4 (1991).Google Scholar
  18. 18.
    M. L. Groth and W. M. Foster. Aerosolized atropine sulfate, influence of inhalation pattern on effective blockade of vagal airway tone. Am. Rev. Resp. Dis. 145:215–219 (1992).Google Scholar
  19. 19.
    M. Dolovich, M. Vanzieleghem, K. G. Hidinger, and M. T. Newhouse. Influence of inspiratory flow rate on the response to terbutaline sulfate inhaled via TurbuhalerR. Am. Rev. Resp. Dis. 137:433–439 (1988).Google Scholar
  20. 20.
    S. P. Newman, F. Moren, E. Trofast, N. Talaee, and S. W. Clarke. Terbutaline sulfate Turbuhaler, effect of inhaled flow rate on drug deposition and efficacy. Int. J. Pharm. 74:209–213 (1991).Google Scholar
  21. 21.
    P. Malmberg, K. Larsson, and S. Thunberg. Increased lung deposition and biological effect of methacholine by the use of a drying device for bronchial provocation tests. Eur. Resp. J. 4:890–898 (1991).Google Scholar
  22. 22.
    J. Heyder, J. Gebhart, G. Rudolph, C. F. Schiller, and W. Stahlhofen. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J. Aerosol Med. 17:811–825 (1986).Google Scholar
  23. 23.
    T. B. Martonen. Analytical model of hygroscopic particle behavior in human airways. Bull. Math. Biol. 44:425–442 (1982).Google Scholar
  24. 24.
    T. B. Martonen, R. C. Graham, and W. Hofmann. Human subject age and activity level, factors addressed in a biomathematical deposition program for extrapolation modeling. Health. Phys. 57:49–59 (1989).Google Scholar
  25. 25.
    I. Balashazy, T. B. Martonen, and W. Hofmann. Fiber deposition in airway bifurcations. J. Aerosol Med. 3:243–260 (1990).Google Scholar
  26. 26.
    E. Weibel. Morphometry of the Human Lung, Springer-Verlag, Berlin, 1963.Google Scholar
  27. 27.
    T. B. Martonen. On the fate of inhaled particles in the human, a comparison of experimental data with theoretical computations based on a symmetric and asymmetric lung. Bull. Math. Biol. 45:409–424 (1983).Google Scholar
  28. 28.
    J. Heyder and G. Rudolf. Deposition of aerosol particles in the human nose. In W. H. Walton (ed.), Inhaled Particles IV, Oxford, Pergamon Press, Oxford, 1977, pp. 107–126.Google Scholar
  29. 29.
    F. J. Miller, T. B. Martonen, M. G. Menache, R. C. Graham, D. M. Spektor, and M. Lippmann. Influence of breathing mode and activity level on the regional deposition of inhaled particles and implications for regulatory standards. In J. Dodgson, R. I. McCallum, M. R. Bailey, and D. R. Fisher (eds.), Pergamon Press, Oxford, 1988, pp. 3–10.Google Scholar
  30. 30.
    W. Stahlhofen, G. Rudolf, and A. C. James. Intercomparison of experimental region aerosol deposition data. J. Aerosol Med. 2:285–308 (1989).Google Scholar
  31. 31.
    T. B. Martonen and Z. Zhang. Comments on recent data for particle deposition in human nasal passages. J. Aerosol Sci. 23:667–674 (1992).Google Scholar
  32. 32.
    W. M. Foster. Is 24 hour lung retention an index of alveolar deposition? J. Aerosol Med. 1:1–10 (1988).Google Scholar
  33. 33.
    G. C. Smaldone, R. J. Perry, W. D. Bennett, M. S. Messina, J. Zwang, and J. Ilowite. Interpretation of “24 hour lung retention” in studies of mucociliary clearance. J. Aerosol Med. 1:11–20 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Ted B. Martonen
    • 1
    • 2
  • Ira M. Katz
    • 3
  1. 1.Health Effects Research LaboratoryU.S. Environmental Protection Agency, Research Triangle Park
  2. 2.Division of Pulmonary Diseases, Department of MedicineUniversity of North CarolinaChapel Hill
  3. 3.Department of Engineering ScienceTrinity UniversitySan Antonio

Personalised recommendations