Pharmaceutical Research

, Volume 10, Issue 10, pp 1427–1433 | Cite as

Inhibition of the Friend Retrovirus by Antisense Oligonucleotides Encapsulated in Liposomes: Mechanism of Action

  • C. Ropert
  • C. Malvy
  • P. Couvreur
Article

Abstract

Proliferation of the Friend retrovirus was specifically inhibited by the env mRNA complementary oligonucleotide encapsulated in pH-sensitive liposomes. This observation was made using the focus immunoassay (FIA) and the reverse transcriptase test. The key finding of the present study was the dramatic impact on liposome penetration. For chronic or de novo infection, the point at which the penetration of liposomes began corresponded to the time needed for the virus to leave the cell. In the absence of the virus, liposomes remained adsorbed onto the cell surface without any internalization. Regardless of the mechanism involved, the fact that a retroviral infection stimulates the cellular uptake of oligonucleotide liposomes widens the spectrum of strategies for specific antiviral action.

Friend retrovirus pH-sensitive liposomes oligonucleotides fibroblasts focus immunoassay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    P. Zamecnik and M. L. Stephenson. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 75:280–284 (1978).Google Scholar
  2. 2.
    M. L. Stephenson and P. Zamecnik. Inhibition of Rous sarcoma virus RNA translation. Proc. Natl. Acad. Sci. USA 75:285–288 (1978).Google Scholar
  3. 3.
    E. L. Wickstrom. Olygodeoxyribonucleotide stability in subcellular extracts and culture media. J. Biochem. Biophys. Methods 13:97–102 (1986).Google Scholar
  4. 4.
    P. S. Miller, K. N. Fang, N. S. Kondo, and P. Ts'O. Synthesis and adenine and thymine nucleoside alkylphosphotriesters, the neutral analog of dinucleoside monophosphate. Biochemistry 18:5134–5144 (1979).Google Scholar
  5. 5.
    F. Eckstein. Nucleosides phosphorothioates. Annu. Rev. Biochem. 54:367–402 (1985).Google Scholar
  6. 6.
    M. Lemaître, B. Bayard, and B. Lebleu. Specific antiviral activity of a poly L lysine conjugated oligodeoxyribonucleotide sequence complementary to V.S.V. N protein mRNA initiation site. Proc. Natl. Acad. Sci. USA 84:648–652 (1987).Google Scholar
  7. 7.
    U. Asseline, M. Delarue, G. Lancelot, N. T. Thuong, T. Montenay-Garestier, and C. Hélène. Nucleic acid-binding with high affinity and base sequence specificity: Intercalating agents covalently linked to oligodeoxyribonucleotides. Proc. Natl. Acad. Sci. USA 81:3297–3301 (1984).Google Scholar
  8. 8.
    C. Chavany, T. Le Doan, P. Couvreur, F. Puisieux, and C. Hélène. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm. Res. 9:000–000 (1992).Google Scholar
  9. 9.
    J. P. Leonetti, P. Machy, G. Degols, B. Lebleu, and L. Leserman. Antibody targeted liposomes containing oligodeoxynucleotide complementary to viral RNA selectively inhibit viral replication. Proc. Natl. Acad. Sci. USA 87:2448–2451 (1990).Google Scholar
  10. 10.
    F. C. Svoka. In K. Yagi (ed.), Medical Application of Liposomes, Japan Scientific Society Press, Tokyo, 1986, pp. 21–30.Google Scholar
  11. 11.
    D. Collins, F. Maxfield, and L. Huang. Immunoliposomes with different acid sensitivities as probes for the cellular endocytic pathway. Biochim. Biophys. Acta 987:47–55 (1989).Google Scholar
  12. 12.
    C. J. Chu, J. Dijkstra, M. Z. Lai, K. Hong, and F. C. Szoka. Efficiency of cytoplasmic delivery by pH sensitive liposomes to cells in culture. Pharm. Res. 7:000–000 (1990).Google Scholar
  13. 13.
    C. Ropert, M. Lavignon, C. Dubernet, P. Couvreur, and C. Malvy. Oligonucleotides encapsulated in pH sensitive liposomes are efficient toward Friend retrovirus. Biochem. Biophys. Res. Comm. 183 (2):879–889 (1992).Google Scholar
  14. 14.
    F. Szoka and P. Papahadjopoulos. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse phase evaporation. Proc. Natl. Acad. Sci. 75 (9):4194–4198 (1978).Google Scholar
  15. 15.
    M. Sitbon, J. Nishio, K. Wehrly, D. Lodmell, and B. Chesebro. Use of a focal immunofluorescence assay on live cells for quantification of retroviruses: Distinction of host range classes in virus mixtures and biological cloning of dualtropic murine leukemia viruses. Virology 141:110–118 (1985).Google Scholar
  16. 16.
    B. Chesebro, F. Wehrly, M. Cloyd, W. Britt, J. Portis, J. Collins, and J. Nishio. Characterization of mouse monoclonal antibodies specific for Friend murine leukemia virus-induced erythroleukemia cells: Friend-specific and FMR-specific antigens. Virology 112:131–134 (1981).Google Scholar
  17. 17.
    S. Akthar, S. Basu, E. Wickstrom, and R. L. Juliano. Interaction of antisense oligonucleotides analogs with phospholipid membranes (liposomes). Nucleic Acid. Res. 20 (19):5551–5559 (1991).Google Scholar
  18. 18.
    M. Vasseur. In Les virus oncogènes, Hermann, Paris, 1989.Google Scholar
  19. 19.
    A. Willer, K. Buff, F. D. Goebel, and V. Erfle. HIV-1, induced membranes alterations increase susceptibility to cytolysis by lipid formulations. IVth Intl. Conf. AIDS, Stockholm, 1988; Abstr. No. 3535.Google Scholar
  20. 20.
    K. Apostolov, W. Barker, S. A. Galpin, N. A. Habib, C. B. Wood, and D. Kinchington. Syncitia formation in HIV 1 infected cells is associated with an increase in cellular oleic acid. Febs. Lett. 250:241–244 (1989).Google Scholar
  21. 21.
    J. P. Leonetti, N. Mechti, G. Degols, C. Gagnor, and B. Lebleu. Intracellular distribution of microinjected antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 88:2702–2706 (1991).Google Scholar
  22. 22.
    D. J. Chin, G. A. Green, G. Zon, F. C. Szoka, and R. M. Straubinger. Rapid nuclear accumulation of injected deoxyribonucleotides. New Biol. 2:1091–1100 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • C. Ropert
    • 1
  • C. Malvy
    • 1
  • P. Couvreur
    • 2
  1. 1.URA 147 CNRS, U140 INSERM, Institut Gustave RoussyVillejuif CedexFrance
  2. 2.URA 1218, Université Paris 11, Centre d'Etudes Pharmaceutiques92296Chatenay-Malabry CedexFrance

Personalised recommendations