Advertisement

Advances in Computational Mathematics

, Volume 9, Issue 3–4, pp 337–352 | Cite as

A note on fast Fourier transforms for nonequispaced grids

  • Gabriele Steidl
Article

Abstract

In this paper, we are concerned with fast Fourier transforms for nonequispaced grids. We propose a general efficient method for the fast evaluation of trigonometric polynomials at nonequispaced nodes based on the approximation of the polynomials by special linear combinations of translates of suitable functions ϕ. We derive estimates for the approximation error. In particular, we improve the estimates given by Dutt and Rokhlin [7]. As a practical consequence, we obtain a criterion for the choice of the parameters involved in the fast transforms.

fast Fourier transform nonequispaced grids B-splines Gaussian bells shift-invariant spaces 65T10 41A15 41A30 42A16 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Anderson and M.D. Dahleh, Rapid computation of the discrete Fourier transform, SIAM J. Sci. Comput. 17 (1996) 913–919.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    G. Beylkin, R. Coifman and V. Rokhlin, Fast wavelet transform and numerical algorithms I, Comm. Pure Appl. Math. 44 (1991) 141–183.zbMATHMathSciNetGoogle Scholar
  3. [3]
    G. Beylkin, On the fast Fourier transform of functions with singularities, Appl. Comput. Harmon. Anal. 2 (1995) 363–381.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Brandt, Multilevel computations of integral transforms and particle interactions with oscillatory kernels, Comput. Phys. Comm. 65 (1991) 24–38.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    C.K. Chui, An Introduction to Wavelets (Academic Press, San Diego, 1992).zbMATHGoogle Scholar
  6. [6]
    J.O. Droese, Verfahren zur schnellen Fourier-Transformation mit nichtäquidistanten Knoten, Diplomarbeit, TH Darmstadt (1996).Google Scholar
  7. [7]
    A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Statist. Comput. 14 (1993) 1368–1393.zbMATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data II, Appl. Comput. Harmon. Anal. 2 (1995) 85–100.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    B. Elbel and G. Steidl, Fast Fourier transforms for nonequispaced grids, Preprint (March 1998).Google Scholar
  10. [10]
    A. Harten and I. Yad-Shalom, Fast multiresolution algorithms for matrix–vector multiplication, SIAM J. Numer. Anal. 31 (1994) 1191–1218.zbMATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Konik, R. Schneider and G. Steidl, Matrix compression by discrete wavelet transform, in: Wavelets and Multilevel Approximation, Approximation Theory, Vol. 8, eds. C.K. Chui and L.L. Schumaker (1995) pp. 225–234.Google Scholar
  12. [12]
    G. Newsam, private communication.Google Scholar
  13. [13]
    J. Pelt, Fast computation of trigonometric sums with application to frequency analysis of astronomical data, Preprint (September 1997).Google Scholar
  14. [14]
    W.H. Press and G.B. Rybicki, Fast algorithms for spectral analysis of unevenly sampled data, Astrophys. J. 338 (1989) 227–280.CrossRefGoogle Scholar
  15. [15]
    R.A. Sramek and F.R. Schwab, Imaging, in: Astronomical Society of the Pacific Conference, Vol. 6, eds. R. Perley, F.R. Schwab and A. Bridle (1988) pp. 117–138.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Gabriele Steidl
    • 1
  1. 1.Fakultät für Mathematik und InformatikUniversität MannheimMannheimGermany

Personalised recommendations