General Relativity and Gravitation

, Volume 29, Issue 5, pp 591–597 | Cite as

Gravity and Signature Change

  • Tevian Dray
  • George Ellis
  • Charles Hellaby
  • Corinne A. Manogue


The use of proper “time” to describe classical “spacetimes” which contain both Euclidean and Lorentzian regions permits the introduction of smooth (generalized) orthonormal frames. This remarkable fact permits one to describe both a variational treatment of Einstein's equations and distribution theory using straightforward generalizations of the standard treatments for constant signature.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geroch, Robert P., and Traschen, Jennie (1987). Phys. Rev. D36, 1017.Google Scholar
  2. 2.
    Dray, Tevian (1996). J. Math. Phys. 37, 5627.Google Scholar
  3. 3.
    Darmois, G. (1927). Mémorial des Sciences Mathématiques, Fasc. 25, (Gauthier-Villars, Paris).Google Scholar
  4. 4.
    Lanczos, C. (1922). Phys. Z. 23, 539; (1924). Ann. Phys. (Leipzig) 74, 518.Google Scholar
  5. 5.
    Embacher, Franz (1995). Phys. Rev. D51, 6764.Google Scholar
  6. 6.
    Dray, Tevian (1997). “Tensor Distributions in the Presence of Degenerate Metrics.” Preprint gr-qc/ 9701047, to appear in Int. J. Mod. Phys. D; Hartley, David, Tucker, Robin W., Tuckey, Philip, and Dray, Tevian (1996). “Tensor Distributions on Signature-Changing Space-Times.” University of Adelaide preprint no. ADP 96-41/ M49, gr-qc/ 9701046Google Scholar
  7. 7.
    See, for instance, Campbell, S. J., and Wainwright, J. (1977). Gen. Rel. Grav. 8, 987; MacCallum, Malcolm (1989). ACM SIG SAM Bulletim 23, 22.Google Scholar
  8. 8.
    Dray, Tevian, Manogue, Corinne A., and Tucker, Robin W. (1991) Gen. Rel. Grav. 23, 967; (1993). Phys. Rev. D48, 2587; (1995). Class. Quantum Grav. 12, 2767.Google Scholar
  9. 9.
    Ellis, G., Sumeruk, A., Coule, D., Hellaby, C. (1992). Class. Quantum Grav. 9, 1535; Ellis, G. F. R. (1992). Gen. Rel. Grav. 24, 1047; Carfora, Mauro, and Ellis, George (1995) Int. J. Mod. Phys. D4, 175.Google Scholar
  10. 10.
    Hellaby, Charles, and Dray, Tevian (1994). Phys. Rev. D49, 5096; Dray, Tevian and Hellaby, Charles (1994). J. Math. Phys. 35, 5922.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Tevian Dray
  • George Ellis
  • Charles Hellaby
  • Corinne A. Manogue

There are no affiliations available

Personalised recommendations