General Relativity and Gravitation

, Volume 29, Issue 6, pp 733–764 | Cite as

Newtonian Cosmology in Lagrangian Formulation: Foundations and Perturbation Theory

  • Jürgen Ehlers
  • Thomas Buchert
Article

Abstract

The “Newtonian” theory of spatially unbounded, self-gravitating, pressureless continua in Lagrangian form is reconsidered. Following a review of the pertinent kinematics, we present alternative formulations of the Lagrangian evolution equations and establish conditions for the equivalence of the Lagrangian and Eulerian representations. We then distinguish open models based on Euclidean space R3 from closed models based (without loss of generality) on a flat torus T3. Using a simple averaging method we show that the spatially averaged variables of an inhomogeneous toroidal model form a spatially homogeneous “background” model and that the averages of open models, if they exist at all, in general do not obey the dynamical laws of homogeneous models. We then specialize to those inhomogeneous toroidal models whose (unique) backgrounds have a Hubble flow, and derive Lagrangian evolution equations which govern the (conformally rescaled) displacement of the inhomogeneous flow with respect to its homogeneous background. Finally, we set up an iteration scheme and prove that the resulting equations have unique solutions at any order for given initial data, while for open models there exist infinitely many different solutions for given data.

GRAVITATIONAL DYNAMICS NEWTONIAN COSMOLOGY EQUIVALENCE OF LAGRANGIAN AND EULERIAN FORM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Barrow, J. D., Götz, G. (1989). Class. Quant. Grav. 6, 1253.Google Scholar
  2. 2.
    Barrow, J. D., Saich, P. (1993). Class. Quant. Grav. 10, 79.Google Scholar
  3. 3.
    Bertschinger, E. (1992). In Lecture Notes in Physics 408 (Springer-Verlag, Berlin), p.65.Google Scholar
  4. 4.
    Bertschinger, E., Hamilton, A. J. S. (1994). Astrophys. J. 435, 1.Google Scholar
  5. 5.
    Bertschinger, E., Jain, B. (1994). Astrophys. J. 431, 486.Google Scholar
  6. 6.
    Bertschinger, E. (1996). In Cosmology and Large Scale Structure. Proc. Les Houches XV Summer School, R. Schaeffer, J. Silk, M. Spiro, J. Zinn-Justin, eds. (Elsevier Science Publishers B. V., Amsterdam), p.273–347.Google Scholar
  7. 7.
    Bildhauer, S., Buchert, T., Kasai, M. (1992). Astron. Astrophys. 263, 23.Google Scholar
  8. 8.
    Bouchet, F. R., Juszkiewicz, R., Colombi, S., Pellat, R. (1992). Astrophys. J. Lett. 394, L5.Google Scholar
  9. 9.
    Bouchet, F. R., Colombi, S., Hivon, E., Juszkiewicz, R. (1995). Astron. Astrophys. 296, 575.Google Scholar
  10. 10.
    Bouchet, F. R. (1996). In Proc. International School of Physics “Enrico Fermi,” CXXXII — Dark Matter in the Universe (Varenna 1995), S. Bonometto, J. Primack, A. Provenzale, eds. (IOP Press, Amsterdam), p.565–599.Google Scholar
  11. 11.
    Brauer, U. (1992). J. Math. Phys. 33, 1224.Google Scholar
  12. 12.
    Brauer, U., Rendall, A., Reula, O. (1994). Class. Quant. Grav. 11, 2283.Google Scholar
  13. 13.
    Bruni, M., Matarrese, S., Pantano, O. (1995). Astrophys. J. 445, 958.Google Scholar
  14. 14.
    Buchert, T., Götz, G. (1987). J. Math. Phys. 28, 2714.Google Scholar
  15. 15.
    Buchert, T. (1989). Astron. Astrophys. 223, 9.Google Scholar
  16. 16.
    Buchert, T. (1992). Mon. Not. R. Astr. Soc. 254, 729.Google Scholar
  17. 17.
    Buchert, T. (1993). Astron. Astrophys. 267, L51.Google Scholar
  18. 18.
    Buchert, T., Ehlers J. (1993). Mon. Not. R. Astr. Soc. 264, 375.Google Scholar
  19. 19.
    Buchert, T. (1994). Mon. Not. R. Astr. Soc. 267, 811.Google Scholar
  20. 20.
    Buchert, T., Melott A.L., Weiû A.G. (1994). Astron. Astrophys. 288, 349.Google Scholar
  21. 21.
    Buchert, T. (1996). In Proc. International School of Physics “Enrico Fermi,” CXXXII — Dark Matter in the Universe (Varenna 1995), S. Bonometto, J. Primack, A. Provenzale, eds. (IOP Press, Amsterdam), p.543–564.Google Scholar
  22. 22.
    Buchert, T. (1993). “Inhomogeneous Newtonian cosmogony.” Habilitationsschrift, LMU Munich.Google Scholar
  23. 23.
    Buchert, T., Ehlers J. (1997). Astron. Astrophys. 320, 1.Google Scholar
  24. 24.
    Buchert, T., Karakatsanis, G., Klaffl, R., Schiller, P. (1997). Astron. Astrophys. 318, 1.Google Scholar
  25. 25.
    Cartan, E. (1923). Ann. Sci. Ec. Norm. Sup. 40, 325.Google Scholar
  26. 26.
    Cartan, E. (1924). Ann. Sci. Ec. Norm. Sup. 41, 1.Google Scholar
  27. 27.
    Catelan, P. (1995). Mon. Not. R. Astr. Soc. 276, 115.Google Scholar
  28. 28.
    Clarke, C. J. S., O'Donnell, N. (1992). Rend. Sem. Math. Univ. Pol. Torino 50, 39.Google Scholar
  29. 29.
    Coles, P., Melott, A. L., Shandarin, S. F. (1993). Mon. Not. R. Astr. Soc. 260, 765.Google Scholar
  30. 30.
    Croudace, K., Parry, J., Salopek, D., Stewart, J. (1994). Astrophys. J. 423, 22.Google Scholar
  31. 31.
    Dodziuk, J. (1979). Proc. Am. Math. Soc. 77, 395.Google Scholar
  32. 32.
    Ehlers, J. (1961). Akad. Wiss. Lit. Mainz, Abh. Math.-Nat. Klasse 11, p.793 (in German); translated (1993). Gen. Rel. Grav. 25, 1225.Google Scholar
  33. 33.
    Ehlers, J., Buchert, T. (1997). PreprintGoogle Scholar
  34. 34.
    Ellis, G. F. R. (1971). In General Relativity and Cosmology, R. Sachs, ed. (Academic Press, New York).Google Scholar
  35. 35.
    Ellis, G. F. R., Dunsby, P. K. S. (1997). Astrophys. J., in press.Google Scholar
  36. 36.
    Fourès-Bruhat, Y. (1958). Bull. Soc. Math. France 86, 155 (in French).Google Scholar
  37. 37.
    Gramann, M. (1993). Astrophys. J. 405, L47.Google Scholar
  38. 38.
    Gurevich, A. V., Zybin, K. P. (1995). Sov. Phys. Uspekhi 38, 687.Google Scholar
  39. 39.
    Heckmann, O. (1968). Theorien der Kosmologie (2nd. ed. Springer-Verlag, Berlin).Google Scholar
  40. 40.
    Heckmann, O., Schücking, E. (1955). Zeitschrift für Astrophysik 38, 95.Google Scholar
  41. 41.
    Heckmann, O., Schücking, E. (1956). Zeitschrift für Astrophysik 40, 81.Google Scholar
  42. 42.
    Heckmann, O., Schücking, E. (1959). Encyclopedia of Physics 53, 489, (Springer-Verlag, Berlin).Google Scholar
  43. 43.
    Kasai, M. (1992). Phys. Rev. D47, 3214.Google Scholar
  44. 44.
    Kasai, M. (1995). Phys. Rev. D52, 5605.Google Scholar
  45. 45.
    Kobayashi, S., Nomizu, K. (1963). Foundations of Differential Geometry (Inter-science, New York).Google Scholar
  46. 46.
    Kofman, L., Pogosyan, D. (1995). Astrophys. J. 442, 30.Google Scholar
  47. 47.
    Lachièze-Rey, M. (1993). Astrophys. J. 408, 403.Google Scholar
  48. 48.
    Lesame, W. M., Ellis, G. F. R., Dunsby, P. K. S. (1996). Phys. Rev. D53, 738.Google Scholar
  49. 49.
    Matarrese, S., Pantano, O., Saez, D. (1993). Phys. Rev. D47, 1311.Google Scholar
  50. 50.
    Matarrese, S., Pantano, O., Saez, D. (1994). Mon. Not. R. Astr. Soc. 271, 513.Google Scholar
  51. 51.
    Matarrese, S. (1996). In Proc. International School of Physics “Enrico Fermi,” CXXXII — Dark Matter in the Universe (Varenna 1995), S. Bonometto, J. Primack, A. Provenzale, eds. (IOP Press, Amsterdam), p.601–628.Google Scholar
  52. 52.
    Matarrese, S., Terranova, D. (1996). Mon. Not. R. Astr. Soc. 283, 400.Google Scholar
  53. 53.
    Melott, A. L., Pellmann, T. F., Shandarin, S. F. (1994). Mon. Not. R. Astr. Soc. 269, 626.Google Scholar
  54. 54.
    Melott, A. L., Buchert, T., Weiû, A. G. (1995). Astron. Astrophys. 294, 345.Google Scholar
  55. 55.
    Moutarde, F., Alimi, J.-M., Bouchet, F. R., Pellat, R., Ramani, A. (1991). Astrophys. J. 382, 377.Google Scholar
  56. 56.
    Munshi, D., Sahni, V., Starobinsky, A. A. (1994). Astrophys. J. 436, 517.Google Scholar
  57. 57.
    Peebles, P. J. E. (1980). The Large-scale Structure of the Universe (Princeton University Press, Princeton, NJ).Google Scholar
  58. 58.
    Peebles, P. J. E. (1993). Principles of Physical Cosmology (Princeton University Press, Princeton, NJ).Google Scholar
  59. 59.
    Raychaudhuri, A. (1955). Phys. Rev. 98, 1123.Google Scholar
  60. 60.
    Rueede, C., Straumann, N. (1997). Helv. Phys. Acta, in press.Google Scholar
  61. 61.
    Russ, H., Morita, M., Kasai, M., Börner, G. (1996). Phys. Rev. D53, 6881.Google Scholar
  62. 62.
    Sahni, V., Coles, P. (1995). Phys. Rep. 262, 1.Google Scholar
  63. 63.
    Salopek, D. S., Stewart, J. M., Croudace, K. M. (1994). Mon. Not. R. Astr. Soc. 271, 1005.Google Scholar
  64. 64.
    Schutz, B. F. (1980). Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge).Google Scholar
  65. 65.
    Serrin, J. (1959). In Encyclopedia of Physics VIII.1 (Springer-Verlag, Berlin).Google Scholar
  66. 66.
    Shandarin, S. F. (1980). Astrophysics 16, 439.Google Scholar
  67. 67.
    Silbergleit, A. (1995). J. Math. Phys. 36, 847.Google Scholar
  68. 68.
    Stuart, J. T., Tabor, M., eds. (1990). The Lagran gian Picture of Fluid Motion Phil. Trans. R. Soc. Lond. A 333, 261–400.Google Scholar
  69. 69.
    Trautman, A. (1966). In Perspectives in Geometry and Relativity, B. Hoffmann, ed. (Indiana University Press, Bloomington), p. 413–425.Google Scholar
  70. 70.
    Trümper, M. (1965). J. Math. Phys. 6, 584.Google Scholar
  71. 71.
    Vanselow, M. (1995). Diploma Thesis, Ludwig-Maximilians-Universität München (in German).Google Scholar
  72. 72.
    Warner, F. W. (1971). Foundations of Differentiable Manifolds and Lie Groups (Scott Foresman, Glenvier, III).Google Scholar
  73. 73.
    Weiû, A. G., Gottlöber, S., Buchert, T. (1996). Mon. Not. R. Astr. Soc. 278, 953.Google Scholar
  74. 74.
    Zel'dovich, Ya. B. (1970). Astron. Astrophys. 5, 84.Google Scholar
  75. 75.
    Zel'dovich, Ya. B. (1973). Astrophysics 6, 164.Google Scholar
  76. 76.
    Zentsova, A. S., Chernin, A. D. (1980). Astrophysics 16, 108.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Jürgen Ehlers
  • Thomas Buchert

There are no affiliations available

Personalised recommendations