Advertisement

Foundations of Physics

, Volume 29, Issue 7, pp 1065–1098 | Cite as

Classical and Quantum Mechanics on Information Spaces with Applications to Cognitive, Psychological, Social, and Anomalous Phenomena

  • Andrei Khrennivov
Article

Abstract

We use the system of p-adic numbers for the description of information processes. Basic objects of our models are so-called transformers of information, basic processes are information processes and statistics are information statistics (thus we present a model of information reality). The classical and quantum mechanical formalisms on information p-adic spaces are developed. It seems that classical and quantum mechanical models on p-adic information spaces can be applied for the investigation of flows of information in cognitive and social systems, since a p-adic metric gives a quite natural description of the ability to form associations.

Keywords

Social System Information Process Quantum Mechanics Information Statistic Mechanical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    N. Bohr, Atomic Theory and the Description of Nature (Cambridge University Press, Cambridge, 1961).Google Scholar
  2. 2.
    E. Schrödinger, My View of the World (Cambridge University Press, Cambridge, 1964).Google Scholar
  3. 3.
    E. Schrödinger, Mind and Matter (Cambridge University Press, Cambrigde, 1958).Google Scholar
  4. 4.
    D. Bohm, Found. Phys. 1, 139–168 (1971).Google Scholar
  5. 5.
    E. P. Wigner, The Scientist Speculates, Good, I. J., ed. (Basic Books, New York, 1962), pp. 284–302.Google Scholar
  6. 6.
    B. d'Espagnat, Veiled Reality: An Analysis of Present-Day Quantum Mechanical Concepts (Addison-Wesley, Reading, MA, 1995).Google Scholar
  7. 7.
    B. d'Espagnat, Reality an Physics (Cambridge University Press, Cambridge, 1989).Google Scholar
  8. 8.
    G. Ryle, The Concept of Mind (Barnes & Noble, New York, 1949).Google Scholar
  9. 9.
    L. E. Rhine, Mind over Matter (Macmillan, New York, 1970).Google Scholar
  10. 10.
    D. O. Hebb, Essay on Mind (Lawrence Erlbaum Associates, Hillsdale, NJ, 1980).Google Scholar
  11. 11.
    J. R. Searle, Behav. Brain Sci. 3, 417–457 (1980).Google Scholar
  12. 12.
    H. Schmidt, Found. Phys. 8, 463–480 (1981).Google Scholar
  13. 13.
    H. Schmidt, Found. Phys. 12, 565–581 (1982)Google Scholar
  14. 14.
    R. G. Jahn and B. J. Dunne, Found. Phys. 16, 721–772 (1986).Google Scholar
  15. 15.
    B. J. Dunne, Y. H. Dobyns, R. G. Jahn, and R. D. Nelson, J. Sci. Explor. 8, 197–215 (1994).Google Scholar
  16. 16.
    D. L. Radin and R. D. Nelson, Found. Phys. 19, 1499–1514 (1989).Google Scholar
  17. 17.
    H. Smidt, J. Sci. Explor. 1, 1–14 (1987).Google Scholar
  18. 18.
    A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems an Biological Models (Kluwer Academic, Dordrecht, 1997).Google Scholar
  19. 19.
    A. Yu. Khrennikov, J. Theor. Biol. 193, 179–196 (1998).Google Scholar
  20. 20.
    S. Albeverio, A. Khrennikov, and P. E. Kloeden, Biosystems 49, 105–115 (1999).Google Scholar
  21. 21.
    W. Schwikhov, Ultrametric Calculus (Cambridge University Press, Cambridge, 1984).Google Scholar
  22. 22.
    I. V. Volovich, Class. Quant. Grav. 4, 83–87 (1987).Google Scholar
  23. 23.
    V. S. Vladimirov and I. V. Volovich, Comun. Math. Phys. 123, 659–676 (1989).Google Scholar
  24. 24.
    P. G. O. Freud and M. Olson, Phys. Lett. B 199, 186–190 (1987).Google Scholar
  25. 25.
    P. G. O. Freud and E. Witten, Phys. Lett. B 199, 191–195 (1987).Google Scholar
  26. 26.
    V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic Analysis and Mathematical Physics (World Scientific, Singapore, 1993).Google Scholar
  27. 27.
    P. H. Frampton and Y. Okada, Phys. Rev. Lett. B 60, 484–486 (1988).Google Scholar
  28. 28.
    I. Ya. Aref'eva, B. Dragovich, P. H. Frampton, and I. V. Volovich, Int. J. Modern Phys. A 6, 4341–4358 (1991).Google Scholar
  29. 29.
    A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Academic, Dordrecht, 1994).Google Scholar
  30. 30.
    A. Yu. Khrennikov, Uspekhi Mat. Nauk. 45, 79–110 (1990).Google Scholar
  31. 31.
    Yu. Manin, New Dimensions in Geometry, Springer Lecture Notes in Math., Vol. 1111 (Springer, New York, 1985), pp. 59–101.Google Scholar
  32. 32.
    B. Dragovic, in Proceedings 3rd A. Friedmann International Seminar on Gravitation and Cosmology, St. Peterburg, 1995.Google Scholar
  33. 33.
    A. Yu. Khrennikov, Nuovo Cimento B 112, 555–560 (1996).Google Scholar
  34. 34.
    S. Albeverio and A. Yu. Khrennikov, J. Modern Phys. 10 (13/14), 1665–1673 (1996).Google Scholar
  35. 35.
    S. Albeverio and A. Yu. Khrennikov, J. Phys. A 29, 5515–5527 (1996).Google Scholar
  36. 36.
    R. Cianci and A. Yu. Khrennikov, Phys. Lett. B 328, 109–112 (1994).Google Scholar
  37. 37.
    A. Yu. Khrennikov, Found. Phys. 26 (8), 1066–1054 (1996).Google Scholar
  38. 38.
    A. Yu. Khrennikov, J. Math. Phys. 39 (3), 1388–1402 (1997).Google Scholar
  39. 39.
    A. Yu. Khrennikov, Phys. Lett. A 200, 119–223 (1995).Google Scholar
  40. 40.
    A. Yu. Khrennikov, Physica A 215, 577–587 (1995).Google Scholar
  41. 41.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1955).Google Scholar
  42. 42.
    M. Jammer, The Conceptual Development of Quantum Mechanics (McGraw-Hill, New York, 1966).Google Scholar
  43. 43.
    J. M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley, Reading, MA, 1968).Google Scholar
  44. 44.
    L. E. Ballentine, Rev. Mod. Phys. 42, 358–381 (1970).Google Scholar
  45. 45.
    L. E. Ballentine, Quantum Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1989).Google Scholar
  46. 46.
    A. Escassut, Analytic Elements in p-Adic Analysis (World Scientific, Singapore, 1995).Google Scholar
  47. 47.
    S. Freund, New Introduction Lectures on Psychoanalysis (Norton, New York, 1933).Google Scholar
  48. 48.
    A. N. Kolmogorov, Foundations of the Probability Theory (Chelsea, New York, 1956).Google Scholar
  49. 49.
    R. von Mises, The Mathematical Theory of Probability and Statistics (Academic, London, 1964).Google Scholar
  50. 50.
    A. Yu. Khrennikov, Teor. Mat. Fiz. 67 (3), 348–363 (1993).Google Scholar
  51. 51.
    R. P. Feynman, Quantum Implications: Essays in Honour of David Bohm, B. J. Hiley and F. D. Peat, eds. (Routledge & Kegan Paul, London, 1987), pp. 235–246.Google Scholar
  52. 52.
    W. Muckenheim, Phys. Rep. 133, 338–401 (1986).Google Scholar
  53. 53.
    P. A. M. Dirac, Proc. Roy. Soc. London A 180, 1–39 (1942).Google Scholar
  54. 54.
    A. Yu. Khrennikov, Int. J. Theor. Phys. 34 (12), 2423–2434 (1995).Google Scholar
  55. 55.
    A. Yu. Khrennikov, J. Math. Phys. 36 (12), 6625–6632 (1995).Google Scholar
  56. 56.
    E. B. Davies, Quantum Theory of Open Systems (Academic, London, 1976).Google Scholar
  57. 57.
    A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982).Google Scholar
  58. 58.
    G. Ludwig, Foundations of Quantum Mechanics (Springer, Berlin, 1983).Google Scholar
  59. 59.
    A. Schild, Phys. Rev. 73, 414–425 (1948).Google Scholar
  60. 60.
    E. J. Hellund and K. Tanaka, Phys. Rev. 94, 192–208 (1954).Google Scholar
  61. 61.
    Yr. Ahmavaara, J. Math. Phys. 6, 87–93 (1965).Google Scholar
  62. 62.
    J. C. Eccles, The Understanding of the Brain (McGraw-Hill, New York, 1974).Google Scholar
  63. 63.
    D. J. Amit, Modeling of Brain Functions (Cambridge University Press, Cambridge, 1989).Google Scholar
  64. 64.
    J. D. Cohen, W. M. Perlstein, T. S. Braver, L. E. Nystrom, D. C. Noll, J. Jonides, and E. E. Smith, Nature 386, 604–608 (1997).Google Scholar
  65. 65.
    S. M. Courtney, L. G. Ungerleider, K. Keil, and J. V. Haxby, Nature 386, 608–611 (1997).Google Scholar
  66. 66.
    F. C. Hoppensteadt, An Introduction to the Mathematics of Neurons: Modeling in the Frequency Domains, 2nd ed. (Cambridge University Press, Cambridge, 1997).Google Scholar
  67. 67.
    D. Bohm and B; Hiley, The Undivided Universe, An Ontological Interpretation of Quantum Mechanics (Routledge & Kegan Paul, London, 1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Andrei Khrennivov

There are no affiliations available

Personalised recommendations