Oxidation of Metals

, Volume 49, Issue 3–4, pp 261–295 | Cite as

Influence of an Externally-Applied Static Charge on the Oxidation Kinetics of Copper

  • S. K. Roy
  • S. K. Mitra
  • S. K. Bose


The kinetics of copper oxidation under theinfluence of an externally-supplied static charge ofeither kind at one of the reaction interfaces of agrowing oxide film on its subsequent thickening weredetermined in the temperature range of 523-1173 K andoxygen-pressure range of 5.06-50.66 kPa. The kineticsconformed to the parabolic rate law under all conditionsof experimentation. In the temperature range of 523-723 K, charge supply of either kind ateither of the oxide interfaces, reduced the ratescompared to normal oxidation. The reduction in rates ismore pronounced with (-)ve charge supply. In thistemperature range, Mott's in situ electrical-potentialgradient across the oxide film is identified as thepredominant driving force for migration of copper ionsduring the subsequent film-thickening process. On the other hand, in the temperature range of 873-973K, a charge supply of either kind enhanced the ratescompared to normal oxidation, where Wagner'selectrochemical-potential gradient acts as the maindriving force for ion diffusion. However, at 1073 K and1173 K, the rates were found to decrease slightlycompared to normal oxidation. The oxygen-pressuredependencies of rate constants at 623 K exhibitedrelations of the type kP ∝P O2 1/4 for normal and kp ∝P O2 1/8 (approximately) for oxidation witheither (+)ve or (-)ve charge supply at the oxide/oxygeninterface. However, at 873 K the oxygen-pressuredependencies of rate constants conform to kP ∝P O2 1/6 for normal as well as for oxidationwith either (+)ve or (-)ve charge supply at theoxide/oxygen interface. The estimated activationenergies are 54 kJ/mol and 160 kJ/mol in Mott's and Wagner's parabolic ranges,respectively. It is established that migration of Cu+ions through the growing film is the rate-limiting stepunder all conditions of experimentation. This study has clearly demonstrated that changes inoxidation rates can be brought about by disturbing theinterfacial defect equilibria with anexternally-supplied static charge when no net currentflows through the oxide film. The estimated self-diffusivityvalues of Cu+ ions in the growingCu2O at 873 K are also reported.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. K. Bose, V. Ananth, and S. C. Sircar, Proceedings of 10th Int. Congress on Metallic Corrosion, Nov. 7 - 11, Madras, Publ. Oxford and IBH, India (1987), p. 3615.Google Scholar
  2. 2.
    S. K. Roy, V. Ananth, and S. K. Bose, Oxid. Met. 43, 185 (1995).Google Scholar
  3. 3.
    V. Ananth, Influence of Impressed Direct Current and Short-circuiting on the Oxidation Behaviour of Copper and Iron and on the Reduction Kinetics of Wüstite at High Temperatures, PhD thesis, I.I.T., Kharagpur, India (1985).Google Scholar
  4. 4.
    P. K. Krishnamoorthy and S. C. Sircar, Acta Met. 16, 1461 (1968).Google Scholar
  5. 5.
    S. K. Roy, P. K. Krishnamoorthy, and S. C. Sircar, Acta Met. 18, 519 (1970).Google Scholar
  6. 6.
    V. Ananth, S. K. Bose, and S. C. Sircar, Scripta Met. 14, 687 (1980).Google Scholar
  7. 7.
    V. Ananth, S. C. Sircar, and S. K. Bose, Proceedings of Inter. Conf. on Corros. Sci. and Tech. (ICMS-85), Calcutta, S. K. Bose and U. K. Chatterjee, eds., Feb. 21- 23 (1985), p. 320.Google Scholar
  8. 8.
    S. K. Bose, S. C. Sircar, and S. K. Roy, in Proceedings of Int. Symposium on High Temp. Corrosion and Protection, June 26- 30 (1990), Shenyang, China, G. Hengrong, Wu Weito, S. Jianian, and Li Tiefan, eds. (Liaoning Science and Technology Publishing House, 1991), p. 29.Google Scholar
  9. 9.
    S. K. Roy, S. K. Bose, and S. C. Sircar, Oxid. Met. 35, 1 (1991).Google Scholar
  10. 10.
    V. Ananth, S. C. Sircar, and S. K. Bose, Trans. JIM 26, 123 (1985).Google Scholar
  11. 11.
    R. N. Patnaik, S. K. Bose, and S. C. Sircar, Br. Corros. J. 12, 57 (1977).Google Scholar
  12. 12.
    S. K. Bose, S. K. Mitra, and S. K. Roy, Oxid. Met. 46, 99 (1996).Google Scholar
  13. 13.
    S. K. Mitra, Influence of Short-circuiting and Static Charge Supply on the Oxidation Kinetics of Cu, Cu- Li and Cu- Cr Systems in the Temperature Range of 523-1173K. PhD thesis, I.I.T., Kharagpur, India (1991).Google Scholar
  14. 14.
    N. L. Peterson and C. L. Wiley, J. Phys. Chem. Solids 45, 281 (1984).Google Scholar
  15. 15.
    J. Xue and R. Dieckmann, J. Phys. Chem. Solids 51, 1263 (1990).Google Scholar
  16. 16.
    S. K. Mitra, P. K. Bhattacharyya, A. Sarkar, S. K. Bose, and S. C. Sircar, J. Mater. Sci. 25, 1318 (1990).Google Scholar
  17. 17.
    A. T. Fromhold, J. Phys. Chem. Solids 33, 95 (1972).Google Scholar
  18. 18.
    A. T. Fromhold, Theory of Metal Oxidation, Vol. I: Fundamental (1976); Vol. II: Space Charge (1980) (North Holland Publ. Co., Amsterdam, New York, Oxford).Google Scholar
  19. 19.
    N. Cabrera and N. F. Mott, Rep. Progr. Phys. 12, 163 (1949).Google Scholar
  20. 20.
    C. Wagner, Z. Phyk. Chem. 21B, 25 (1933); 32B, 447 (1936).Google Scholar
  21. 21.
    C. Wagner, Atom Movements (ASM, Cleveland, Ohio, 1951), p. 151.Google Scholar
  22. 22.
    O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th Ed. (Pergamon Press, Oxford, 1989).Google Scholar
  23. 23.
    J. Bardeen, W. H. Brattain, and W. Schockley, J. Chem. Phys. 14, 714 (1946).Google Scholar
  24. 24.
    F. A. Kröger, The Chemistry of Imperfect Crystals, Vol. 3, 2nd rev. Ed. (North Holland Publ. Co., Oxford, 1974), p. 103.Google Scholar
  25. 25.
    J. A. Leroux and E. Raub, Z. Anorg. u. Allgen. Chem. 188, 205 (1930).Google Scholar
  26. 26.
    N. B. Pilling and R. E. Bedworth, J. Inst. Met. 29, 529 (1923).Google Scholar
  27. 27.
    O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys (Butterworths, London, 1967), p. 22.Google Scholar
  28. 28.
    K. Hauffe, Oxidation of Metals (Plenum Press, New York, 1965), p. 159.Google Scholar
  29. 29.
    P. Kofstad, High Temperature Oxidation of Metals (John Wiley and Sons, New York and London, 1966), p. 123; High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988), pp. 186, 202.Google Scholar
  30. 30.
    C. Wagner and K. Grunewald, Z. Physik Chem. B40, 455 (1938).Google Scholar
  31. 31.
    F. P. Fehlner and N. F. Mott, in Oxidation of Metals and Alloys, D. L. Douglass, ed. (ASM, Metals Park, 1971), p. 37.Google Scholar
  32. 32.
    J. Bloem, Philips. Res. Rep. 13, 167 (1958).Google Scholar
  33. 33.
    R. S. Toth, R. Kilkson, and D. Trivich, Phys. Rev. 122, 482 (1961).Google Scholar
  34. 34.
    N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Dover Publ. New York, 1964), p. 178.Google Scholar
  35. 35.
    S. K. Roy, Kinetics of Oxidation of Copper and Its Alloys at Low and Intermediate Temperatures, PhD thesis, I.I.T., Kharagpur, India (1976).Google Scholar
  36. 36.
    K. Fueki and J. B. Wagner, J. Electrochem. Soc. 112, 384 (1965).Google Scholar
  37. 37.
    F. S. Pettit, J. Electrochem. Soc. 113, 1250 (1966).Google Scholar
  38. 38.
    S. Mrowec and A. Stoklosa, Oxid. Met. 3, 291 (1971).Google Scholar
  39. 39.
    S. Mrowec, A. Stoklosa, and K. Godlewski, Cryst. Latt. Def. 5, 239 (1974).Google Scholar
  40. 40.
    S. Mrowec, Defects and Diffusion in Solids - An Introduction (Elsevier, 1980), pp. 191, 378.Google Scholar
  41. 41.
    W. J. Tomlinson and J. Yates, J. Phys. Chem. Solids 38, 1205 (1977).Google Scholar
  42. 42.
    W. Jost, Diffusion in Solids, Liquids and Gases (Academic Press, New York, 1952), p. 352.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • S. K. Roy
  • S. K. Mitra
  • S. K. Bose

There are no affiliations available

Personalised recommendations