General Relativity and Gravitation

, Volume 31, Issue 1, pp 91–105

The Gravitational Interaction of Light: From Weak to Strong Fields

  • V. Faraoni
  • R. M. Dumse
Article

Abstract

An explanation is proposed for the fact thatpp-waves superpose linearly when they propagateparallelly, while they interact nonlinearly, scatter andform singularities or Cauchy horizons if they areantiparallel. Parallel pp-waves do interact, but ageneralized gravitoelectric force is exactly cancelledby a gravitomagnetic force. In an analogy, theinteraction of light beams in linearized generalrelativity is also revisited and clarified, a new result isobtained for photon to photon attraction, and aconjecture is proved. Given equal energy density in thebeams, the light-to-light attraction is twice thematter-to-light attraction and four times the matter-to-matterattraction.

Superposition of pp-waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980). Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge).Google Scholar
  2. 2.
    Bonnor, W. B. (1969). Commun. Math. Phys. 13, 163.Google Scholar
  3. 3.
    Aichelburg, P. C. (1971). Acta Phys. Austriaca 34, 279.Google Scholar
  4. 4.
    Griffiths, J. B. (1991). Colliding Plane Waves in General Relativity (Clarendon Press, Oxford).Google Scholar
  5. 5.
    Tolman, R. C., Ehrenfest, P. and Podolsky, B. (1931). Phys. Rev. 37, 602; Tolman, R. C. (1934). Relativity, Thermodynamics and Cosmology (Clarendon Press, Oxford).Google Scholar
  6. 6.
    Will, C. M. (1993). Theory and Experiment in Gravitational Physics (revised ed., Cambridge University Press, Cambridge).Google Scholar
  7. 7.
    Wheeler, J. A. (1955). Phys. Rev. 97, 511.Google Scholar
  8. 8.
    Power, E. A., and Wheeler, J. A. (1957). Rev. Mod. Phys. 29, 480; Brill, R. D., and Wheeler, J. A. (1957). Rev. Mod. Phys. 29, 465; Ernst, F. J. (1957). Phys. Rev. 105, 1662; 1665; Rev. Mod. Phys. 29, 496; Wheeler, J.A. (1961). Rev. Mod. Phys. 33, 63; Wheeler, J.A. (1962). Geometrodynamics (Academic Press, New York); Brill, R. D. and Hartle, J. B. (1964). Phys. Rev. 135, B271.Google Scholar
  9. 9.
    Sorkin, R. D. et al. (1981). Gen. Rel. Grav. 13, 1127.Google Scholar
  10. 10.
    Sokolov, S. N. (1992). Gen. Rel. Grav. 24, 519.Google Scholar
  11. 11.
    Cooperstock, F. I., Faraoni, V., and Perry, G. P. (1996). Int. J. Mod. Phys. D 5, 375; Anderson, P. R., and Brill, D. R., (1997). Phys. Rev. D 56, 4824.Google Scholar
  12. 12.
    Wald, R. M. (1984). General Relativity (University of Chicago Press, Chicago).Google Scholar
  13. 13.
    Jantzen, R. T., Carini, P., and Bini, D. (1992). Ann. Phys. (NY) 215, 1.Google Scholar
  14. 14.
    Schneider, P., Ehlers, J., and Falco, E. E. (1992). Gravitational Lenses (Springer-Verlag, Berlin).Google Scholar
  15. 15.
    Jackson, J. D. (1962). Classical Electrodynamics (Wiley and Sons, New York).Google Scholar
  16. 16.
    Penrose, R. (1965). Rev. Mod. Phys. 37, 215.Google Scholar
  17. 17.
    Ferrari, V., Pendenza, P., and Veneziano, G. (1988). Gen. Rel. Grav. 20, 1185.Google Scholar
  18. 18.
    Cooperstock, F.I. and Faraoni, V. (1993). Class. Quantum Grav. 10, 1189.Google Scholar
  19. 19.
    Garriga, J. and Peter, P. (1994). Class. Quantum Grav. 11, 1743.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • V. Faraoni
    • 1
    • 2
  • R. M. Dumse
    • 1
  1. 1.RggR, Faculté des Sciences, Campus PlaineUniversité Libre de BruxellesBruxellesBelgium
  2. 2.New Micros Inc.DallasUSA

Personalised recommendations