General Relativity and Gravitation

, Volume 30, Issue 3, pp 497–507

Effect of the Global Rotation of the Universe on the Formation of Galaxies

  • Li-Xin Li
Article

Abstract

The effect of the global rotation of the universe on the formation of galaxies is investigated. It is found that the global rotation provides a natural origin for the rotation of galaxies, and the morphology of the objects formed from gravitational instability in a rotating and expanding universe depends on the amplitude of the density fluctuation, different values of the amplitude of the fluctuation lead to the formation of elliptical galaxies, spiral galaxies, and walls. The global rotation gives a natural explanation of the empirical relation between the angular momentum and mass of galaxies: J ∝ M5/3. The present angular velocity of the universe is estimated at ∼10-13rad yr-1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Gamow, G. (1946). Nature158, 549.Google Scholar
  2. 2.
    Gödel, K. (1949). Rev. Mod. Phys.21, 447.Google Scholar
  3. 3.
    Gödel, K. (1990). In Kurt Gödel Collected Works, Volume II, S. Feferman et al., eds. (Oxford University Press, Oxford), p. 208.Google Scholar
  4. 4.
    Ellis, G. F. R. (1971). In Proc. International School of Physics “Enrico Fermi,” XLVII — General Relativity and Cosmology (Varenna, 30 June-12 July 1969), B. K. Sachs, ed. (Academic Press, New York), p. 104.Google Scholar
  5. 5.
    Obukhov, Yu. N. (1992). Gen. Rel. Grav.24, 121.Google Scholar
  6. 6.
    Korotky V. A., and Obukhov, Yu. N. (1996). In Gravity, Particles and Space-Time, P. Pronin and G. Sardanashvily, eds. (World Scientific, Singapore), p. 421; also preprint gr-qc/9604049.Google Scholar
  7. 7.
    Collins, C. B., and Hawking, S. W. (1973). Mon. Not. R. Astr. Soc.162, 307.Google Scholar
  8. 8.
    Hawking, S. W. (1974). In Confrontation of Cosmological Theories with Observation al Data, M. S. Longair, ed. (IAU) (D. Reidel Publ. Co., Dordrecht), p. 283.Google Scholar
  9. 9.
    Matzner, R. A. (1997). Private communication.Google Scholar
  10. 10.
    Ciufolini, I., and Wheeler, J. A. (1995). Gravitation and Inertia(Princeton University Press, Princeton).Google Scholar
  11. 11.
    Obukhov, Yu. N. (1990). In Gauge Theories of Fundamental Interactions (Banach Centre Proceedings 1988 ), R. Raczka and M. Pawlowski, eds. (World Scientific, Singapore), p. 341.Google Scholar
  12. 12.
    Korotky, V. A., and Obukhov, Yu. N. (1991). Sov. Phys. JET P72, 11.Google Scholar
  13. 13.
    Pavelkin, V. N., and Panov, V. F. (1995). Int. J. Mod. Phys. D4, 161.Google Scholar
  14. 14.
    Birch, P. (1982). Nature298, 451.Google Scholar
  15. 15.
    Korotky, V. A., and Obukhov, Yu. N. (1994). Gen. Rel. Grav.26, 429.Google Scholar
  16. 16.
    Broadhurst, T. J., Ellis, R. S. Koo, D. G., and Szalay, A. S. (1990). Nature343, 726.Google Scholar
  17. 17.
    Phinney, E. S., and Webster, R. L. (1983). Nature301, 735.Google Scholar
  18. 18.
    Birch, P. (1983). Nature301, 736.Google Scholar
  19. 19.
    MacGillivray, H. T., and Dodd, R. J. (1985). Astron. Astrophys.145, 269.Google Scholar
  20. 20.
    Djorgovski, S. (1987). In Nearly Normal Galaxies: From the Planck Time to the Present, S. M. Faber, ed. (Springer-Verlag, New York), p. 227.Google Scholar
  21. 21.
    Sugai, H., and Iye, M. (1995). Mon. Not. R. Astr. Soc.276, 327.Google Scholar
  22. 22.
    Hu, F. X., Wu, G. X., Su, H. J., and Liu, Y. Z. (1995). Astron. Astrophys.302, 45.Google Scholar
  23. 23.
    Parnovsky, S. L., Karachentsev, I. D., and Karachentseva, V. E. (1994). Mon. Not. R. Astr. Soc.268, 665.Google Scholar
  24. 24.
    Flin, P. (1995). Comments Astrophys.18, 81.Google Scholar
  25. 25.
    Brosche, P. (1963). Zs. f. Astrophys.57, 143.Google Scholar
  26. 26.
    Ozernoy, L. M. (1967). Astron. Tsirk.407, 1.Google Scholar
  27. 27.
    Burbidge, E. M., and Burbidge, G. R. (1975). In Galaxies and the Universe, A. Sandage, M. Sandage, and J. Kristian, eds. (University of Chicago Press, Chicago), p. 81.Google Scholar
  28. 28.
    Trimble, V. (1988). In New Ideas in Astronomy: Proc. Conference Held in Honor of the 60th Birthday of Halton C. Arp, F. Bertola, J. W. Sulentic, and B. F. Madore, eds. (Cambridge University Press, Cambridge), p. 239.Google Scholar
  29. 29.
    King, A. R., and Ellis, G. F. R. (1973). Commun. Math. Phys.31, 209.Google Scholar
  30. 30.
    Raychaudhuri, A. K. (1979). Theoretical Cosmology(Clarendon Press, Oxford).Google Scholar
  31. 31.
    Hawking, S. W. (1969). Mon. Not. R. Astr. Soc.142, 129.Google Scholar
  32. 32.
    Ellis, G. F. R. (1973). In Cargese Lectures in Physics, , E. Schatzman, ed. (Gordon and Breach, New York), p. 1.Google Scholar
  33. 33.
    Nordsiek, K. H. (1973). Astrophys. J.184, 735.Google Scholar
  34. 34.
    Dai, W. S., Liu, R. L., and Hu, F. X. (1978). Acta Astron. Sinica19, 24.Google Scholar
  35. 35.
    Carrasco, L., Roth, M., and Serrano, A. (1982). Astron. Astrophys.106, 89.Google Scholar
  36. 36.
    Abramyan, M. G., and Sedrakyan, D. M. (1985). Astrophysics23, 396.Google Scholar
  37. 37.
    Peebles, P. J. E. (1993). Principles of Physical Cosmology(Princeton University Press, Princeton).Google Scholar
  38. 38.
    von Weizsäcker, C. F. (1951). Astrophys. J.114, 165.Google Scholar
  39. 39.
    Gamow, G. (1952). Phys. Rev.86, 251.Google Scholar
  40. 40.
    Jones, B. J. T., and Peebles, P. J. E. (1972). Comments Astrophys. Space Phys.4, 121.Google Scholar
  41. 41.
    Jones, B. J. T. (1973). Astrophys. J.181, 269.Google Scholar
  42. 42.
    Hoyle, F. (1951). In Problems of Cosmical Aerodynamics, J. M. Burgers and H. C. van de Hulst, eds. (Central Air Documents Office, Dayton, Ohio), p. 195.Google Scholar
  43. 43.
    Peebles, P. J. E. (1969). Astrophys. J.155, 393.Google Scholar
  44. 44.
    Peebles, P. J. E. (1971). Astron. Astrophys.11, 377.Google Scholar
  45. 45.
    Barnes, J., and Efstathiou, G. (1987). Astrophys. J.319, 575.Google Scholar
  46. 46.
    Peebles, P. J. E. (1980). The Large-Scale Structure of the Universe(Princeton University Press, Princeton).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Li-Xin Li

There are no affiliations available

Personalised recommendations