Oxidation of Metals

, Volume 50, Issue 5–6, pp 431–455 | Cite as

Characterization of High-Temperature Oxide Films on Stainless Steels by Electrochemical-Impedance Spectroscopy

  • J. Pan
  • C. Leygraf
  • R. F. A. Jargelius-Pettersson
  • J. Linden


Oxide films formed on three stainless steels(UNS S30403; S44600; S30815) in air at 800°C werecharacterized by electrochemical-impedance spectroscopy(EIS). The film evolution vs. oxidation time wasinvestigated from 1 to 1000 hr. A three-electrodeelectrochemical cell and 0.1 MNa2SO4 solution were employed forEIS measurements. The spectra were interpreted in termsof a two-layer model of the films, where the capacitance and resistance obtained can berelated to the thickness (or roughness) anddefectiveness of the films. The results reveal that theoxide on S30403 grows and becomes defective, the oxideon S44600 thickens rapidly and retains its protectiveability for a relatively long time, and the oxide onS30815 remains thin and resistive. The two-layer modelis supported by surface characterization with SEM/EDS and in-depth profile of the oxide filmsobtained through glow discharge optical emissionspectroscopy (GDOES).



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. G. Fontana, Corrosion Engineering, 3rd edn. (McGraw-Hill, New York, 1987), Chaps. 2, 9, and 11.Google Scholar
  2. 2.
    F. Mansfield, in Advances in Corrosion Science and Technology, Vol. 6, M. G. Fontana and R. W. Staehle, eds. (Plenum Press, New York, 1976), p. 163.Google Scholar
  3. 3.
    D. A. Jones, Principles and Prevention of Corrosion (Macmillan, Singapore, 1992), Chap. 5 and 12.Google Scholar
  4. 4.
    J. M. West, Basic Corrosion and Oxidation, 2nd edn. (Ellis Horwood, Chichester, 1986), Chaps. 9, 13 and 14.Google Scholar
  5. 5.
    L. L. Shreir, R. A. Jarman, and G. T. Burstein, Corrosion, Vol. 1, Metal/ Environment Reactions, 3rd edn. (Butterworth Heinemann, London, 1994), Chap. 1.Google Scholar
  6. 6.
    P. Kofstad, High Temperature Corrosion, 2nd edn. (Elsevier, New York, 1988), Chaps. 2–8 and 10–12.Google Scholar
  7. 7.
    J. R. Macdonald, Impedance SpectroscopyEmphasizing Solid Materials and Systems (John Wiley & Sons, New York, 1987), Chaps. 1–4.Google Scholar
  8. 8.
    C. M. A. Brett and A. M. O. Brett, ElectrochemistryPrinciples, Methods, and Applications (Oxford University Press, New York, 1993), Chaps. 11 and 16.Google Scholar
  9. 9.
    C. Gabrielli, Identification of Electrochemical Processes by Frequency Response Analysis, Technical Report Number 004/ 83 (Solartron-Schlumberger, England, 1984), Chaps. 1–3.Google Scholar
  10. 10.
    C. Gabrielli, Use and Applications of Electrochemical Impedance Techniques, Technical Report (Solartron-Schlumberger, England, 1990), Chaps. 1–3.Google Scholar
  11. 11.
    J. O'M. Bockris, and A. K. N. Reddy, Modern Electrochemistry, Vol. 2 (Plenum Press, New York, 1970), Chap. 7.Google Scholar
  12. 12.
    F. Mansfeld, Analysis and Interpretation of EIS Data for Metals and Alloys, Technical Report 26 (Solartron-Schlumberger, England, 1993), Chap 4.Google Scholar
  13. 13.
    J. L. Dawson, G. E. Thompson, and M. B. H. Ahmadun, in Electrochemic al Impedance: Analysis and Interpretation (ASTM STP 1188), J. R. Scully, D. C. Silverman, and M. W. Kendig, eds. (American Society for Testing and Materials, 1993), p. 255.Google Scholar
  14. 14.
    A. Baltat-Bazia, N. Celati, M. Keddam, H. Takenouti, and R. Wiart, Mater. Sci. Forum 111–112, 359 (1992).Google Scholar
  15. 15.
    N. Celati, M. C. Sainte Catherine, M. Keddam, and H. Takenouti, Mater. Sci. Forum, 192–194, 335 (1995).Google Scholar
  16. 16.
    J. A. Bardwell, and M. C. H. McKubre, Electrochim. Acta 36, 647 (1991).Google Scholar
  17. 17.
    H. Göhr, J. Schaller, and C.-A. Schiller, Electrochim. Acta 38, 1961 (1993).Google Scholar
  18. 18.
    M. L. Escudero, J. L. Gonzalez-Carrasco, C. Garcia-Alonso, and E. Ramirez, Biomaterials 16, 735 (1995).Google Scholar
  19. 19.
    K. Jüttner, W. J. Lorenz, and W. Paatsch, Corros. Sci. 29, 279 (1989).Google Scholar
  20. 20.
    K. Jüttner, Electrochim. Acta 35, 1501 (1990).Google Scholar
  21. 21.
    J. Hitzig, K. Jüttner, W. J. Lorenz, and W. Paatsch, J. Electrochem. Soc. 133, 887 (1986).Google Scholar
  22. 22.
    F. Mansfeld and M. W. Kendig, J. Electrochem. Soc. 135, 828 (1988).Google Scholar
  23. 23.
    F. Mansfeld, Electrochim. Acta 35, 1533 (1990).Google Scholar
  24. 24.
    J. Pan, unpublished data.Google Scholar
  25. 25.
    D. C. Silverman, in Electrochemical Impedance: Analysis and Interpretation (ASTM STP 1188), J. R. Scully, D. C. Silverman, and M. W. Kendig, eds. (American Society for Testing and Materials, 1993), p. 192.Google Scholar
  26. 26.
    I. Saeki, H. Konno, and R. Furuichi, Corros. Sci. 38, 19 (1996).Google Scholar
  27. 27.
    J. Pan and C. Leygraf, Report for SANDVIK Steel (1995).Google Scholar
  28. 28.
    C. R. Clayton and I. Olefjord, in Corrosion Mechanisms in Theory and Practice, P. Marcus and J. Oudar, eds. (Marcel Dekker, New York, 1995), p. 175.Google Scholar
  29. 29.
    F. H. Stott and F. I. Wei, Oxid. Met. 31, 369 (1989).Google Scholar
  30. 30.
    R. F. A. Jargelius-Pettersson, Report, Swedish Institute for Metals Research, Stockholm (1996).Google Scholar
  31. 31.
    A. W. Adamson, Physical Chemistry of Surfaces, 5th edn. (John Wiley & Sons, New York, 1990), Chap. XV.Google Scholar
  32. 32.
    H. Lindström, PhD thesis, Uppsala University, Sweden (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • J. Pan
  • C. Leygraf
  • R. F. A. Jargelius-Pettersson
  • J. Linden

There are no affiliations available

Personalised recommendations