Advertisement

Oxidation of Metals

, Volume 51, Issue 5–6, pp 353–382 | Cite as

Hot Corrosion Behavior of CM 247 LC Alloy in Na2SO4 and NaCl Environments

  • I. Gurrappa
Article

Abstract

Hot corrosion studies of CM 247 LC alloy werecarried out in pure sodium sulfate, as well as sodiumchloride and sodium sulfate mixtures of differentconcentrations at various temperatures. A crucible test was employed to study the suitability of CM 247LC as a gas turbine blade material. It was observed thatbare CM 247 LC was severely corroded in just 4 hr, whileit was completely consumed in 70 hr when tested in 90% Na2SO4 +10% NaCl at 900°C. The results show that a chloridecontaining melt is more corrosive than pure sodiumsulfate. The weight loss is linearly related tot1/2 (time) and temperature in the different environments studied. Thecorroded samples were characterized by EPMA, SEM, XRD,and metallographic techniques. The results show that hotcorrosion of CM 247 LC is an electrochemicalphenomenon.

SUPERALLOY HOT CORROSION ELECTROCHEMICAL MODEL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. Stringer, Mater. Sci. Technol. 3, 482 (1987).Google Scholar
  2. 2.
    F. S. Pettit and G. H. Meier, Proc. of Superalloys (1984).Google Scholar
  3. 3.
    P. Hancock, Mater. Sci. Technol. 3, 356 (1987).Google Scholar
  4. 4.
    P. Hancock and M. Mallik, in Materials for Advanced Power Engineering, D. Coutsouradis et al., eds., Part I, Kluwer Academic Publishers, Netherlands (1994), p. 685.Google Scholar
  5. 5.
    E. L. Simmons, G. V. Browning, and H. A. Liebhafsky, Corrosion 11, 505t (1955).Google Scholar
  6. 6.
    G. Baudo, Coatings Corros. 1, 11 (1977).Google Scholar
  7. 7.
    A. Rehmel, Werkst. Korros. 19, 750 (1968).Google Scholar
  8. 8.
    E. Tatar-Maisescu and A. Rehmel, Electrochim. Acta 20, 479 (1975).Google Scholar
  9. 9.
    A. Rehmel, Electrochim. Acta 21, 853 (1976).Google Scholar
  10. 10.
    E. Erdos, H. Altorfer, and E. Denzler, Werkst. Korros. 33, 373 (1982).Google Scholar
  11. 11.
    M. J. Graham, G. I. Sproule, D. Coplan, and M. Cohen, J. Electrochem. Soc. 119, 883 (1972).Google Scholar
  12. 12.
    M. J. Graham, D. Coplan, and M. Cohen, J. Electrochem. Soc. 119, 1265 (1972).Google Scholar
  13. 13.
    Y. S. Hwang and R. A. Rapp, J. Electrochem. Soc. 137, 1276 (1990).Google Scholar
  14. 14.
    R. A. Rapp, Pure Appl. Chem. 62, 113 (1990).Google Scholar
  15. 15.
    Y. S. Hwang and R. A. Rapp, Corrosion 45, 933 (1989).Google Scholar
  16. 16.
    J. E. Restall, Proc. 3rd Conference on Gas Turbine Materials in a Marine Environment, University of Bath, England, Session V, paper 10 (1976).Google Scholar
  17. 17.
    R. L. Jones, K. H. Stern, and S. T. Gadomski, Proc. 3rd Conference on Gas Turbine Materials in a Marine Environment, University of Bath, England, Session V, paper 8 (1976).Google Scholar
  18. 18.
    Y. Bouris and C. St. John, Oxid. Met. 9, 507 (1975).Google Scholar
  19. 19.
    B. Hicks, Mater. Sci. Technol. 3, 772 (1987).Google Scholar
  20. 20.
    J. A. Goebel, F. S. Pettit, and G. W. Goward, Met. Trans. 4, 261 (1973).Google Scholar
  21. 21.
    H. Morrow, III, D. L. Sponseller, and E. Kalns, Met. Trans. A5, 673 (1974).Google Scholar
  22. 22.
    M. E. El Dahshan, D. P. Whittle, and J. Springer, Werkst. Korros. 25, 910 (1975).Google Scholar
  23. 23.
    R. F. Reising, Corrosion 31, 159 (1975).Google Scholar
  24. 24.
    V. Guttmann and M. Schutz, Proc. High Temperature Alloys for Gas Turbines 1986, W. Betz et al., eds. (Reidel, Dordrecht, 1986), p. 293.Google Scholar
  25. 25.
    M. Schutz, Mater. Sci. Eng. 121A, 563 (1989).Google Scholar
  26. 26.
    A. K. Misra, J. Electrochem. Soc. 133, 1037 (1986).Google Scholar
  27. 27.
    J. F. G. Conde, AGARD Conf. Copenhagen (1972).Google Scholar
  28. 28.
    R. C. Hurst, J. B. Johnson, M. Davies, and P. Hancock, in Deposition and Corrosion in Gas Turbines, A. B. Hart and A. J. B. Cutler, eds. (London, Applied Science Publishers, 1972).Google Scholar
  29. 29.
    P. Hancock, Corros. Sci. 18, 527 (1978).Google Scholar
  30. 30.
    R. H. Barkalow and F. S. Pettit, Proc. 4th Conference on Gas Turbine Materials in a Marine Environment, Annapolis, Maryland, June, 1979.Google Scholar
  31. 31.
    J. G. Smeggil, A. W. Funkenbuson, and N. S. Bornstein, (Presented at the Spring meeting of the Electrochemical Society, Cincinnati, Ohio, 1984), p. 27.Google Scholar
  32. 32.
    D. R. Sigler, Oxid. Met. 29, 23 (1988).Google Scholar
  33. 33.
    J. G. Smeggil and G. C. Peterson, Oxid. Met. 29, 103 (1988).Google Scholar
  34. 34.
    J. G. Smeggil, Mater. Sci. Eng. 87, 261 (1987).Google Scholar
  35. 35.
    J. G. Smeggil, A. W. Funkenbuson, and N. S. Bornstein, Met. Trans. 17A, 923 (1986).Google Scholar
  36. 36.
    I. Gurrappa, Surf. Coat. Technol., submitted.Google Scholar
  37. 37.
    I. Gurrappa, J. Mater. Sci. Lett., in press.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • I. Gurrappa

There are no affiliations available

Personalised recommendations