Digestive Diseases and Sciences

, Volume 43, Issue 9, pp 2086–2092 | Cite as

Carbonic Anhydrase I Reduction in Colonic Mucosa of Patients with Active Ulcerative Colitis

  • Rosa Fonti Giovanni
  • Latella Renzo
  • Caprilli Giuseppe
  • Frieri Adriana
  • Marcheggiano Yula Sambuy


Ulcerative colitis (UC) is associated with lowintracolonic pH and unbalanced transmucosal ionicexchanges. Along the gastrointestinal tract carbonicanhydrase isoenzyme I (CA-I) is specifically expressed in colon epithelium and is involved in mucosalcontrol of ion, fluid, and acid- base balance. Sincealtered CA-I expression may play some role in UC, CA-Iwas measured at the mRNA and protein level and carbonic anhydrase (CA) enzyme activity wasdetermined in colon biopsies of 14 UC patients (6remission, 4 mild, 4 moderate UC) and of 12 healthysubjects. Patients with mild or moderate UC showed asignificant reduction of CA-I mRNA and protein and of totalCA activity in the inflamed mucosa compared to controls.Patients with UC in remission showed a pattern of CA-Iexpression and CA activity similar to controls. This is the first report showing a reduction inthe expression of CA-I in active UC.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris J, Shields R: Absorption and secretion of water and electrolytes by the intact human colon in diffuse and treated proctocolitis. Gut 11:21-33, 1970Google Scholar
  2. 2.
    Schilli R, Breuer R, Klein F, Dunn K, Gnaedinger A, Bernstein J, Paige M, Kaufman M: Comparison of the composition of fecal fluid in Crohn's disease and ulcerative colitis. Gut 23:326-332, 1982PubMedGoogle Scholar
  3. 3.
    Vernia P, Latella G, Breuer R, Gnaedinger A, Mancuso G, Caprilli R: Electrolyte loss in stools of ulcerative colitis patients. Guidelines for replacement therapy. Ital J Gastroenterol 19:313-316, 1987Google Scholar
  4. 4.
    Roediger W, Lawson M, Kwok V, Kerr Grant A, Pannall P: Colonic bicarbonate output as a test of disease activity. J Clin Pathol 37:704-707, 1984PubMedGoogle Scholar
  5. 5.
    Caprilli R, Frieri G, Latella G, Santoro M, Vernia P: Fecal excretion of bicarbonate in ulcerative colitis. Digestion 35:136- 140, 1986PubMedGoogle Scholar
  6. 6.
    Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca F, Cittadini M: Fecal lactate and ulcerative colitis. Gastroenterology 95:1564-1568, 1988PubMedGoogle Scholar
  7. 7.
    McNeil N, Ling K, Wager J: Mucosal surface pH of the large intestine of the rat and of normal and inflamed large intestine in man. Gut 28:707-713, 1987PubMedGoogle Scholar
  8. 8.
    Caprilli R, Frieri G, Latella G, Ligas E, Vernia P: Endoscopic measurement of colonic pH in ulcerative colitis. Gastroenterology 104:A676, 1993Google Scholar
  9. 9.
    Binder H, Sandle G: Electrolyte transport in the mammalian colon. InPhysiology of the Gastrointe stinal Tract, Volume 2, 3rd ed. L Johnson (ed). New York, Raven Press, 1994, pp 2133-2171Google Scholar
  10. 10.
    Caprilli R, Vernia P, Colaneri O, Torsoli A: Blood pH: A test for assessment of severity on proctocolitis. Gut 17:763-769, 1976PubMedGoogle Scholar
  11. 11.
    Hawker P, Mc Kay J, Turnberg L: Electrolyte transport across colonic mucosa from patients with inflammatory bowel disease. Gastroenterology 79:508-511, 1980PubMedGoogle Scholar
  12. 12.
    Rachmilewitz D, Karmeli F, Sharon P: Decreased colonic Na-K ATPAse activity in active ulcerative colitis. Isr J Med Sci 20:681-684, 1984PubMedGoogle Scholar
  13. 13.
    Ejderhamn J, Finkel Y, Strandvik B: Na,K-ATPase activity in rectal mucosa of children with ulcerative colitis and Crohn's disease. Scand J Gastroenterol 24:1121-1125, 1989PubMedGoogle Scholar
  14. 14.
    Sandle G, Higgs N, Crowe P, Marsh M, Venkatesan S, Peters T: Cellular basis for defective electrolyte transport in inflammed human colon. Gastroenterology 99:97-105, 1990PubMedGoogle Scholar
  15. 15.
    Goldfarb D, Chan A, Hernandez D, Charney A: Effect of thiazides on colonic NaCl absorption: Role of carbonic anhydrase. Am J Physiol 261:F452-F458, 1991PubMedGoogle Scholar
  16. 16.
    Binder H, Foster E, Budinger M, Hayslett J: Mechanism of electroneutral sodium chloride absorption in distal colon of the rat. Gastroenterology 93:449-455, 1987PubMedGoogle Scholar
  17. 17.
    Charney A, Wagner J, Birnbaum G, Johnstone J: Functional role of carbonic anhydrase in intestinal electrolyte transport. Am J Physiol 251:G682-G687, 1986PubMedGoogle Scholar
  18. 18.
    Charney A, Dagher P: Acid-base effects on colonic electrolyte transport revisited. Gastroenterology 111:1358-1368, 1996PubMedGoogle Scholar
  19. 19.
    Sly W, Hu P: Human carbonic anhydrase and carbonic anhydrase deficiency. Annu Rev Biochem 64:375-401, 1995CrossRefPubMedGoogle Scholar
  20. 20.
    Henry R: Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Physiol 58:523-538, 1996CrossRefPubMedGoogle Scholar
  21. 21.
    Parkkila S: Carbonic anhydrase in the alimentary tract. Scand J Gastroenterol 31:305-317, 1996PubMedGoogle Scholar
  22. 22.
    Parkkila S, Parkkila A-K, Juvonen T, Rajaniemi H: Distribution of the carbonic anhydrase isoenzymes I, II and IV in the human alimentary tract. Gut 35:646-650, 1994PubMedGoogle Scholar
  23. 23.
    Kjeldsen J, Schaffalitzky de Muckadell O: Assessment of disease severity and activity in inflammatory bowel disease. Scand J Gastroenterol 28:1-9, 1993PubMedGoogle Scholar
  24. 24.
    Gomes P, du Boulay C, Smith C, Holdstock G: Relationship between disease activity indices and colonoscopic findings in patients with colonic inflammatory bowel disease. Gut 27:92- 95, 1986PubMedGoogle Scholar
  25. 25.
    Truelove S, Witts L: Cortisone in ulcerative colitis: Final report on a therapeutic trial. Br Med J 2:1041-1048, 1955Google Scholar
  26. 26.
    Hanauer S: Inflammatory bowel disease. N Engl J Med 334:841-848, 1996PubMedGoogle Scholar
  27. 27.
    Auton J, Carter N, Barragry J, Morris D, Cohen R: Rapid diagnosis of thyroid disease using carbonic anhydrase immunoassay. Lancet 1385-1387, 1976Google Scholar
  28. 28.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275, 1951PubMedGoogle Scholar
  29. 29.
    Laemmli UK: Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680-685, 1970PubMedGoogle Scholar
  30. 30.
    Dunn SD: Effects of modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on western blots by monoclonal antibodies. Anal Biochem 157:144-153, 1986PubMedGoogle Scholar
  31. 31.
    Chirgwin JM, Przybyla AE, Mac Donald RJ, Rutter WI: Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294-5299, 1979PubMedGoogle Scholar
  32. 32.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning. A Laboratory Manual. New York, CSH Laboratory Press, 1989Google Scholar
  33. 33.
    Sowden J, Leigh S, Talbot I, Delhanty J, Edwards Y: Expression from the proximal promoter of the carbonic anhydrase I gene as a marker for differentiation in colon epithelia. Differentiation 53:67-74, 1993PubMedGoogle Scholar
  34. 34.
    Maren T: A simplified micromethod for the dete rmination of carbonic anhydrase and its inhibitors. J Pharmacol Exp Ther 130:26-29, 1960PubMedGoogle Scholar
  35. 35.
    Kleinbaum D, Kupper L: Applied Regression Analysis and Other Multivariable Methods. Boston, Duxbury Press, 1978Google Scholar
  36. 36.
    Wilkinson J. Isoenzymes. London, Chapman and Hall Ltd., 1970, pp 313-314Google Scholar
  37. 37.
    Allgayer H, Kruis W, Paumgartner G, Wiebecke B, Brown L, Erdmann E: Inverse relationship between colonic (Na+-K+)-ATPase activity and degree of mucosal inflammation in inflammatory bowel disease. Dig Dis Sci 33:417-422, 1988PubMedGoogle Scholar
  38. 38.
    Sharon P, Karmeli F, Rachilewitz D: Effect of prostanoids on human intestinal Na-K ATPAse activity. Isr J Med Sci 20:677- 680, 1984PubMedGoogle Scholar
  39. 39.
    Kameyama J, Narvi H, Inui M, Sato T: Energy level in large intestinal mucosa in patients with ulcerative colitis. Tohoku J Exp Med 143:253-254, 1984PubMedGoogle Scholar
  40. 40.
    Gibson P, Rosella O, Nov R, Young G: Colonic epithelium is diffusely abnormal in ulcerative colitis and colorectal cancer. Gut 36:857-863, 1995PubMedGoogle Scholar
  41. 41.
    Borkje B, Laerum OD, Schrumpf E: Enzyme activities in biopsy specimens from large-bowel mucosa in ulcerative colitis. Scand J Gastroenterol 22:443-448, 1987PubMedGoogle Scholar
  42. 42.
    Sakanoue Y, Hatada T, Horai T, Okamoto T, Kusunoki M, Utsunomiya J: Increase d protein tyrosine kinase activity of the colonic mucosa in ulcerative colitis. Scand J Gastroenterol 27:686-690, 1992PubMedGoogle Scholar
  43. 43.
    Rachmilewitz D, Eliakim R, Ackerman Z, Karmeli F: Direct determination of colonic nitric oxide level: a sensitive marker of disease activity in ulcerative colitis. Am J Gastroenterol 93:409-412, 1998PubMedGoogle Scholar
  44. 44.
    Kimura H, Miura S, Shigematsu T, Ohkubo N, Tsuzuki Y, Kurose I, Higuchi H, Akiba Y, Hokari R, Hirokawa M, Serizawa H, Ishii H: Increased nitric oxide production and inducible nitric oxide synthase activity in colonic mucosa of patients with active ulcerative colitis and Crohn's disease. Dig Dis Sci 42:1047-1054, 1997PubMedGoogle Scholar
  45. 45.
    Mennigen R, Kusche J, Streffer C, Krakamp B: Diamine oxidase activities in the large bowel mucosa of ulcerative colitis patients. Agents Action 30:264-266, 1990Google Scholar
  46. 46.
    Moore JW, Babidge WJ, Millard SH, Roediger WE: Thiolmethyltransferase activity in the human colonic mucosa: Implications for ulcerative colitis. J Gastroenterol Hepatol 12:678-684, 1997PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Rosa Fonti Giovanni
  • Latella Renzo
  • Caprilli Giuseppe
  • Frieri Adriana
  • Marcheggiano Yula Sambuy

There are no affiliations available

Personalised recommendations