Advertisement

General Relativity and Gravitation

, Volume 31, Issue 1, pp 107–114 | Cite as

LETTER: Generalized Vaidya Solutions

  • Anzhong Wang
  • Yumei Wu
Article

Abstract

A large family of solutions, representing, ingeneral, spherically symmetric Type II fluid, ispresented, which includes most of the known solutions tothe Einstein field equations, such as, the monopole-de Sitter-charged Vaidya ones.

Vaidya solution spherical null fluids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Vaidya, P. C. (1951). Proc. Indian Acad. Sci. A 33, 264. Reprinted 1999, Gen. Rel. Grav. 31, 119.Google Scholar
  2. 2.
    Joshi, P. S. (1993). Global Aspects in Gravitation and Cosmology (Clarendon, Oxford).Google Scholar
  3. 3.
    Papapetrou, A. (1985). In A Random Walk in Relativity and Cosmology, N. Dadhich, J.K. Rao, J.V. Narlikar, and C.V. Vishveshwara, eds. (Wiley, New York), pp. 184-191.Google Scholar
  4. 4.
    Penrose, R. (1969). Riv. Nuovo Cimento 1, 252.Google Scholar
  5. 5.
    Lindquist, R. W., Schwartz, R. A., and Misner, C. W. (1965). Phys. Rev. B 137, 1364; Israel, W. (1967). Phys. Lett. A 24, 184; Plebanski, J., and Stachel, J. (1967). J. Math. Phys. 9, 169; Bonnor, W. B., and Vaidya, P. C. (1970). Gen. Rel. Grav. 1, 127.Google Scholar
  6. 6.
    Sullivan, B. T., and Israel, W. (1980). Phys. Lett. A 79, 371.Google Scholar
  7. 7.
    Kaminaga, Y. (1990). Class. Quantum Grav. 7, 1135.Google Scholar
  8. 8.
    Lake, K., and Zannias, T. (1991). Phys. Rev. D 43, 1798.Google Scholar
  9. 9.
    Husain, V. (1996). Phys. Rev. D 53, R1759.Google Scholar
  10. 10.
    Brown, J. D., and Husain, V. (1997). Int. J. Mod. Phys. D 6, 563.Google Scholar
  11. 11.
    Barrabés, C., and Israel, W. (1991). Phys. Rev. D 43, 1129.Google Scholar
  12. 12.
    Poisson, E., and Israel, W. (1990). Phys. Rev. D 41, 1796.Google Scholar
  13. 13.
    Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge).Google Scholar
  14. 14.
    Barriola, M., and Vilenkin, A. (1989). Phys. Rev. Lett. 63, 341.Google Scholar
  15. 15.
    Letelier, P. S. (1979). Phys. Rev. D 20, 1294.Google Scholar
  16. 16.
    Ori, A. (1991). Class. Quantum Grav. 8, 1559.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Anzhong Wang
    • 1
  • Yumei Wu
    • 2
  1. 1.Departamento de Física TeóricaUniversidade do Estado Rio de JaneiroRio de Janeiro - RJBrazil
  2. 2.Instituto de MatemáticaUniversidade Federal do Rio de JaneiroRio de Janeiro - RJBrazil

Personalised recommendations