Advertisement

Foundations of Physics

, Volume 29, Issue 4, pp 589–614 | Cite as

All the Bell Inequalities

  • Asher Peres
Article

Abstract

Bell inequalities are derived for any number of observers, any number of alternative setups for each one of them and any number of distinct outcomes for each experiment. It is shown that if a physical system consists of several distant subsystems, and if the results of tests performed on the latter are determined by local variables with objective values, then the joint probabilities for triggering any given set of distant detectors are convex combinations of a finite number of Boolean arrays, whose components are either 0 or 1 according to a simple rule. This convexity property is both necessary and sufficient for the existence of local objective variables. It leads to a simple graphical method which produces a large number of generalized Clauser-Horne inequalities corresponding to the faces of a convex polytope. It is plausible that quantum systems whose density matrix has a positive partial transposition satisfy all these inequalities, and therefore are compatible with local objective variables, even if their quantum properties are essentially non-local.

Keywords

Density Matrix Quantum System Physical System Joint Probability Convex Combination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. S. Bell, Physics (N.Y.) 1, 195 (1964).Google Scholar
  2. 2.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).Google Scholar
  3. 3.
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1993), Chap. 6, and references therein.Google Scholar
  4. 4.
    J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974).Google Scholar
  5. 5.
    N. D. Mermin, Am. J. Phys. 49, 940 (1981).Google Scholar
  6. 6.
    J. S. Bell, in Foundations of Quantum Mechanics, Proceedings of the International School of PhysicsEnrico Fermi,” Course XLIX, B. d'Espagnat, ed. (Academic, New York, 1971).Google Scholar
  7. 7.
    E. Schrödinger, Naturwissenschaften 23, 800, 823, 844 (1935); translation in Quantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, NJ, 1983), p. 152.Google Scholar
  8. 8.
    A. Garg and N. D. Mermin, Found. Phys. 14, 1 (1984).Google Scholar
  9. 9.
    I. Pitowsky, Br. J. Philos. Sci. 45, 95 (1994).Google Scholar
  10. 10.
    R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970), p. 200.Google Scholar
  11. 11.
    S. L. Braunstein and C. M. Caves, Ann. Phys. (N.Y.) 202, 22 (1990).Google Scholar
  12. 12.
    A. Garg and N. D. Mermin, Phys. Rev. Lett. 49, 1220 (1982).Google Scholar
  13. 13.
    N. D. Mermin, Philos. Sci. 50, 359 (1983).Google Scholar
  14. 14.
    P. Horodecki and R. Horodecki, Phys. Rev. Lett. 76, 2196 (1996).Google Scholar
  15. 15.
    N. D. Mermin and A. Garg, Phys. Rev. Lett. 76, 2197 (1996).Google Scholar
  16. 16.
    R. Horodecki, P. Horodecki, and M. Horodecki, Phys. Lett. A 200, 340 (1995).Google Scholar
  17. 17.
    N. D. Mermin, Phys. Rev Lett. 65, 1838 (1990).Google Scholar
  18. 18.
    M. Ardehali, Phys. Rev. A 46, 5375 (1992).Google Scholar
  19. 19.
    N. Gisin and H. Bechmann-Pasquinucci, Phys. Lett. A 246, 1 (1998).Google Scholar
  20. 20.
    S. L. Braunstein and A. Mann, Phys. Rev. A 47, 2427 (1993).Google Scholar
  21. 21.
    R. F. Werner, Phys. Rev. A 40, 4277 (1989).Google Scholar
  22. 22.
    A. Peres, Phys. Rev. Lett. 77, 1413 (1996).Google Scholar
  23. 23.
    P. Busch and P. Lahti, Found. Phys. Lett. 10, 113 (1997).Google Scholar
  24. 24.
    A. Peres, Phys. Rev. A 54, 2685 (1996).Google Scholar
  25. 25.
    C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996).Google Scholar
  26. 26.
    C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).Google Scholar
  27. 27.
    D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Phys. Rev. Lett. 77, 2818 (1996).Google Scholar
  28. 28.
    S. Popescu, Phys. Rev. Lett. 74, 2619 (1995).Google Scholar
  29. 29.
    M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 80, 5239 (1998).Google Scholar
  30. 30.
    A. Garg and N. D. Mermin, Phys. Rev. D 27, 339 (1983), Sec. III.Google Scholar
  31. 31.
    I. Pitowski, Math. Program. 50, 395 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Asher Peres

There are no affiliations available

Personalised recommendations