Pharmaceutical Research

, Volume 16, Issue 1, pp 55–61 | Cite as

Intestinal Transport of β-Lactam Antibiotics: Analysis of the Affinity at the H+/Peptide Symporter (PEPT1), the Uptake into Caco-2 Cell Monolayers and the Transepithelial Flux

  • Beate Bretschneider
  • Matthias Brandsch
  • Reinhard Neubert
Article

Abstract

Purpose. This study on the intestinal transport of β-lactam antibiotics was undertaken to investigate the correlation between cellular transport parameters and the bioavailability.

Methods. Transport of 23 β-lactam antibiotics was characterized by measuring their ability to inhibit the uptake of glycylsarcosine into Caco-2 cells, their uptake into the cells and their total flux across the cell monolayers.

Results. Ceftibuten and cyclacillin were recognized by PEPT1 with affinity constants comparable to those of natural dipeptides (Ki = 0.3 and 0.5 mM, respectively). Cefadroxil, cefamandole, cephradine, cefaclor, cefuroxime-axetil, cefixime, cephalotin, cephalexin and ampicillin also interacted with PEPT1 (Ki = 7-14 mM). In contrast, cefapirin, cefodizime, cefuroxime, cefmetazole, ceftazidime, benzyl-penicillin, ceftriaxone, cefpirome, cefotaxime, cefepime, cephaloridine and cefsulodin displayed no affinity to the transport system (Ki > 20 mM). The uptake into the cells and the transepithelial flux was highest for those β-lactam antibiotics, which showed the strongest inhibition of [14C]Gly-Sar transport (p < 0.0001). Exceptions were cefuroxim-axetil and cephalotin.

Conclusions. The probability of oral bioavailability for β-lactam antibiotics is mainly determined by their affinity to PEPT1. A threshold Ki value of 14 mM with respect to Gly-Sar uptake is required.

PEPT1 peptide transport β-lactam antibiotics Caco-2 cells cephalosporins penicillins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. Tsuji. Intestinal absorption of β-lactam antibiotics. In M. D. Taylor and G. L. Amidon (eds.) Peptide-based drug design. American Chemical Society, Washington, DC., 1995, pp. 101–134.Google Scholar
  2. 2.
    E. Walter, T. Kissel, and G. L. Amidon. The intestinal peptide carrier: A potential transport system for small peptide derived drugs. Adv. Drug Del. Rev. 20:33–58 (1996).Google Scholar
  3. 3.
    K.-I. Inui, T. Okano, H. Maegawa, M. Kato, M. Takano, and R. Hori. H+ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine. J. Pharm. Exp. Ther. 247:235–241 (1988).Google Scholar
  4. 4.
    N. Muranushi, T. Yoshikawa, M. Yoshida, T. Oguma, K. Hirano, and H. Yamada. Transport characteristics of ceftibuten, a new oral cephem, in rat intestinal brush-border membrane vesicles: relationship to oligopeptide and amino β-lactam transport. Pharm. Res. 6:308–312 (1989).Google Scholar
  5. 5.
    A. H. Dantzig, D. C. Duckworth, and L. B. Tabas. Transport mechanisms responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells. Biochim. Biophys. Acta 1191:7–13 (1994).Google Scholar
  6. 6.
    S.-I. Matsumoto, H. Saito, and K.-I. Inui. Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco-2: interaction with dipeptide transport systems in apical and basolateral membranes. J. Pharm. Exp. Ther. 270:498–504 (1994).Google Scholar
  7. 7.
    C. H. Gochoco, F. M. Ryan, J. Miller, P. L. Smith, and I. J. Hidalgo. Uptake and transepithelial transport of the orally absorbed cephalosporin cephalexin, in the human intestinal cell line, Caco-2. Int. J. Pharm. 104:187–202 (1994).Google Scholar
  8. 8.
    M. E. Ganapathy, M. Brandsch, P. D. Prasad, V. Ganapathy, and F. H. Leibach. Differential recognition of β-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J. Biol. Chem. 270:25672–25677 (1995).Google Scholar
  9. 9.
    U. Wenzel, I. Gebert, H. Weintraut, W.-M. Weber, W. Clauß, and H. Daniel. Transport characteristics of differently charged cephalosporin antibiotics in oocytes expressing the cloned intestinal peptide transporter PepT1 and in human intestinal Caco-2 cells. J. Pharm. Exp. Ther. 277:831–839 (1996).Google Scholar
  10. 10.
    T. Terada, H. Saito, M. Mukai, and K.-I. Inui. Recognition of β-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am. J. Physiol. 273:F706–F711 (1997).Google Scholar
  11. 11.
    N. J. Snyder, L. B. Tabas, D. M. Berry, D. C. Duckworth, D. O. Spry, and A. H. Dantzig. Structure-activity relationship of carbacephalosporins and cephalosporins: antibacterial activity and interaction with the intestinal proton-dependent dipeptide transport carrier of Caco-2 cells. Antimicrob. Agents Chemother. 41:1649–1657 (1997).Google Scholar
  12. 12.
    F. H. Leibach and V. Ganapathy. Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 16:99–119 (1996).Google Scholar
  13. 13.
    S. A. Adibi. The oligopeptide transporter (Pept-1) in human intestine: biology and function, Gastroenterology 113:332–340 (1997).Google Scholar
  14. 14.
    S. Nussberger, A. Steel, and M. A. Hediger. Structure and pharmacology of proton-linked peptide transporters. J. Contr. Rel. 46:31–38 (1997).Google Scholar
  15. 15.
    H. Daniel. Function and molecular structure of brush border membrane peptide/H+ symporters. J. Membr. Biol. 154:197–203 (1996).Google Scholar
  16. 16.
    H. Daniel and S. A. Adibi. Transport of β-lactam antibiotics in kidney brush border membrane. Determinants of their affinity for the oligopeptide/H+ symporter. J. Clin. Invest. 92:2215–2223 (1993).Google Scholar
  17. 17.
    M. Brandsch, Y. Miyamoto, V. Ganapathy, and F. H. Leibach. Expression and protein kinase C-dependent regulation of peptide/H+ co-transport system in the Caco-2 human colon carcinoma cell line. Biochem. J. 299:253–260 (1994).Google Scholar
  18. 18.
    M. Brandsch, S. Ramamoorthy, N. Marczin, J. D. Catravas, J. W. Leibach, V. Ganapathy, and F. H. Leibach. Regulation of taurine transport by Escherichia coli heat-stable enterotoxin and guanylin in human intestinal cell lines. J. Clin. Invest. 96:361–369 (1995).Google Scholar
  19. 19.
    F. Delie and W. Rubas. A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: Advantages and limitations of the Caco-2 model. Crit. Rev. Ther. Drug Carrier Syst. 14:221–286 (1997).Google Scholar
  20. 20.
    J. Li and I. J. Hidalgo. Molecular modeling study of structural requirements for the oligopeptide transporter. J. Drug Target 4:9–17 (1996).Google Scholar
  21. 21.
    P. W. Swaan and J. J. Tukker. Molecular determinants of recognition for the intestinal peptide carrier. J. Pharm. Sci. 86:596–602 (1997).Google Scholar
  22. 22.
    C. Simon and W. Stille. Antibiotika—Therapie in Klinik und Praxis. 7th edition, 1989, Schattauer, Stuttgart-New York.Google Scholar
  23. 23.
    P. L. Smith, D. A. Wall, C. H. Gochoco, and G. Wilson. Routes of delivery: Case studies. Oral absorption of peptides and proteins. Adv. Drug. Del. Rev. 8:253–290 (1992).Google Scholar
  24. 24.
    M. E. Ganapathy, P. D. Prasad, B. Mackenzie, V. Ganapathy, and F. H. Leibach. Interaction of anionic cephalosporins with the intestinal and renal peptide transporters PEPT 1 and PEPT 2. Biochim. Biophys. Acta 1324:296–308 (1997).Google Scholar
  25. 25.
    A. Blais, P. Bissonnette, and A. Berteloot. Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon. J. Membr. Biol. 99:113–125 (1987).Google Scholar
  26. 26.
    A. Tsuji, I. Tamai, M. Nakanishi, T. Terasaki, and S. Hamano. Intestinal brush-border transport of the oral cephalosporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits. J. Pharm. Pharmacol. 45:996–998 (1993).Google Scholar
  27. 27.
    H. Saitoh, C. Gerard, and B. J. Aungst. The secretory intestinal transport of some β-lactam antibiotics and anionic compounds: a mechanism contributing to poor oral absorption. J. Pharmacol. Exp. Ther. 278:205–211 (1996).Google Scholar
  28. 28.
    I. Tamai, T. Nakanishi, K. Hayashi, T. Terao, Y. Sai, T. Shiraga, K. I. Miyamoto, E. Takeda, H. Higashida, and A. Tsuji. The predominant contribution of oligopeptide transporter PepT1 to intestinal absorption of β-lactam antibiotics in rat small intestine. J. Pharm. Pharmacol. 49:796–801 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Beate Bretschneider
    • 1
  • Matthias Brandsch
    • 2
  • Reinhard Neubert
    • 1
  1. 1.Department of Pharmacy, Institute of Pharmaceutics and BiopharmaceuticsMartin-Luther-University Halle-WittenbergHalleGermany
  2. 2.Biozentrum of the UniversityHalleGermany

Personalised recommendations