Foundations of Physics

, Volume 29, Issue 4, pp 527–552 | Cite as

Multiparticle Entanglement

  • H. A. Carteret
  • N. Linden
  • S. Popescu
  • A. Sudbery


The Greenberger-Horne-Zeilinger state is the most famous example of a state with multiparticle entanglement. In this article we describe a group theoretic framework we have been developing for understanding the entanglement in general states of two or more quantum particles. As far as entanglement is concerned, two states of n spin-1/2 particles are equivalent if they are on the same orbit of the group of local rotations (U(2)n). We consider both pure and mixed states and calculate the number of independent parameters needed to describe such states up to this equivalence. We describe how the entanglement of states in a given equivalence class may be characterized by the stability group of the action of the group of local rotations on any of the states in the class. We also show how to calculate invariants under the group of local actions for both pure and mixed states. In the case of mixed states we are able to explicitly exhibit sets of invariants which allow one to determine whether two generic mixed states are equivalent up to local unitary transformations.


General State Equivalence Class Mixed State Local Action Independent Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. B. Greenberger, M. Horne, and A. Zeilinger, in Bell’ s Theorem, Quantum Theory and Conceptions of the Universe, M. Kafatos, ed. (Kluwer Academic, Dordrecht, 1989).Google Scholar
  2. 2.
    J. Bell, Physics 1, 195 (1964).Google Scholar
  3. 3.
    R. Jozsa, in Geometric Issues in the Foundations of Science, S. Huggett, L. Mason, K. P. Tod, S. T. Tsou, and N. M. J. Woodhouse, eds. (OUP, 1997).Google Scholar
  4. 4.
    C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys.Rev. Lett. 70, 1895 (1993).Google Scholar
  5. 5.
    A. Ekert, Phys. Rev. Lett. 67, 661 (1991).Google Scholar
  6. 6.
    D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, Phys. Rev.Lett. 77, 2818 (1996).Google Scholar
  7. 7.
    C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 70, 2046 (1996).Google Scholar
  8. 8.
    C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).Google Scholar
  9. 9.
    N. Gisin, Phys. Lett. A 210, 151 (1996).Google Scholar
  10. 10.
    M. Horodecki, P. Horodecki, and R. Horodecki, quant-ph/9801069.Google Scholar
  11. 11.
    D. B. Greenberger, M. Horne, and A. Zeilinger, Phys. Today 42, 22 (1993).Google Scholar
  12. 12.
    N. Linden and S. Popescu, Fortsch. Phys. 46, 567 (1998).Google Scholar
  13. 13.
    N. Linden, S. Popescu, and A. Sudbery, quant-ph/9801076.Google Scholar
  14. 14.
    A. Shimony, in The Dilemma of Einstein, Podolsy and Rosen 60 Years Later (Annals of the Israel Physical Society, 12 ), A. Mann and M. Revzen, eds. (Adam Hilger, Bristol, 1996).Google Scholar
  15. 15.
    V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).Google Scholar
  16. 16.
    S. Popescu and D. Rohrlich, Phys. Rev. A 56, 3219 (1997).Google Scholar
  17. 17.
    M. Horodecki and R. Horodecki, quant-ph/9705003.Google Scholar
  18. 18.
    M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 200, 340 (1995).Google Scholar
  19. 19.
    P. Horodecki and R. Horodecki, Phys. Lett. A 210, 227 (1996).Google Scholar
  20. 20.
    M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 222, 21 (1996).Google Scholar
  21. 21.
    A. Peres, quant-ph/9504006, and references therein.Google Scholar
  22. 22.
    D. Fivel, private communication.Google Scholar
  23. 23.
    J. Schlienz and G. Mahler, Phys. Lett. A 224, 39 (1996).Google Scholar
  24. 24.
    M. Grassl, M. Rötteler, and T. Beth, quant-ph/9712040.Google Scholar
  25. 25.
    E. Rains, quant-ph/9704042.Google Scholar
  26. 26.
    J. Schlienz, Ph.D. Thesis.Google Scholar
  27. 27.
    M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. V, 2nd ed. (Publish or Perish, Houston, TX, 1979).Google Scholar
  28. 28.
    See, e.g., D. Cox, J. Little, and D. O'shea, Ideals, Varieties and Algorithms (Springer, New York, 1992), B. Sturmfels, Algorithms in Invariant Theory (Springer, Vienna, 1993).Google Scholar
  29. 29.
    J. L. Alperin and R. B. Bell, Groups and Representations (Springer, New York, 1995).Google Scholar
  30. 30.
    H. A. Carteret and A. Sudbery, manuscript in preparation.Google Scholar
  31. 31.
    N. Linden, S. Massar, and S. Popescu, Phys. Rev. Lett. 81, 3279 (1998).Google Scholar
  32. 32.
    S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).Google Scholar
  33. 33.
    W. K. Wootters, quant-ph/9709029. 552 Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • H. A. Carteret
  • N. Linden
  • S. Popescu
  • A. Sudbery

There are no affiliations available

Personalised recommendations