Foundations of Physics

, Volume 29, Issue 10, pp 1521–1541 | Cite as

F-Information, a Unitless Variant of Fisher Information

  • B. Roy Frieden


A new information matrix [F] with elements F mn = 〈 (y m - a m )(y n - an) (∂ ln p(y | a)/∂a m ) (∂ ln p(y | a)/∂a n ) 〉 is analyzed. The PDF p(y | a) is the usual likelihood law. [F] differs from the Fisher information matrix by the presence of the first two factors in the given expectation. These factors make F mn unitless, in contrast with the Fisher information. This lack of units allows F mn values from entirely different phenomena to be compared as, for example, Shannon information values can be compared. Each element F mn defines an error inequality analogous to the Cramer-Rao inequality. In the scalar case F mn ≡ F, for a normal p(y|a) law F = 3, while for an exponential law F = 9. A variational principle F = min (called FMIN) allows an unknown PDF p(x) to be estimated in the presence of weak information. Under certain conditions F obeys a “Boltzmann F-theorem” ∂F/∂t ⩽ 0, indicating that F is a physical entropy. Finally, the trace ℱ of [F] may be used as the scalar information quantity in an information-based principle for deriving distribution laws p of physics.


Entropy Variational Principle Fisher Information Information Matrix Scalar Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 1968).Google Scholar
  2. 2.
    B. R. Frieden and R. J. Hughes, Phys. Rev. E 49, 2644–2649 (1994).Google Scholar
  3. 3.
    B. R. Frieden, in Advances in Imaging and Electron Physics, Vol. 90, P. W. Hawkes, ed. (Academic, Orlando, FL, 1995), pp. 123–204.Google Scholar
  4. 4.
    B. R. Frieden and B. H. Soffer, Phys. Rev. E 52, 2274–2286 (1995).Google Scholar
  5. 5.
    B. R. Frieden and W. J. Cocke, Phys. Rev. E 54, 257–260 (1996).Google Scholar
  6. 6.
    W. J. Cocke, Phys. Fluids A 8, 1609–1614 (1996).Google Scholar
  7. 7.
    B. R. Frieden, Physics from Fisher Information (Cambridge University Press, Cambridge, 1998).Google Scholar
  8. 8.
    A. J. Stam, Inf. Control 2, 101–112 (1959).Google Scholar
  9. 9.
    B. R. Frieden, Probability, Statistical Optics and Data Testing, 2nd edn. (Springer, New York, 1991).Google Scholar
  10. 10.
    F. Reza, An Introduction to Information Theory (McGraw-Hill, New York, 1961).Google Scholar
  11. 11.
    Ref. 4, Appendices A and C.Google Scholar
  12. 12.
    G. A. Korn and T. M. Korn, Mathematical Handbook, 2nd edn. (McGraw-Hill, New York, 1968).Google Scholar
  13. 13.
    E. Kamke, Differentialgleichungen Losungsmethoden und Losungen (Chelsea, New York, 1948).Google Scholar
  14. 14.
    B. R. Frieden, Found. Phys. 16, 883–906 (1986).Google Scholar
  15. 15.
    F. Benford, Proc. Am. Philos. Soc. 78, 551–572 (1938).Google Scholar
  16. 16.
    H. H. Jeffreys, Theory of Probability, 3rd edn. (Oxford University Press, London, 1961).Google Scholar
  17. 17.
    A. R. Plastino and A. Plastino, Phys. Rev. E 54, 4423–4426 (1996).Google Scholar
  18. 18.
    Ref. 9, p. 50.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • B. Roy Frieden

There are no affiliations available

Personalised recommendations