Advertisement

Boundary-Layer Meteorology

, Volume 98, Issue 1, pp 1–31 | Cite as

Modelling Regional Scale Surface Energy Exchanges And Cbl Growth In A Heterogeneous, Urban-Rural Landscape

  • H. A. Cleugh
  • C. S. B. Grimmond
Article

Abstract

Over the last decade, simple models of theconvective boundary layer (CBL) have beensuggested as an approach to inferring regionallyaveraged land-air exchanges of heat, water and tracegases, because the properties of the CBL respond toan average of the underlying small-scaleheterogeneity. This paper explores the use of anintegral CBL method to infer regionally averagedfluxes in a landscape that has at least three majorsources of heterogeneity – irrigated andnon-irrigated rural land use and a large urban area(Sacramento region, California).

The first part of the paper assesses the validity ofthe simple slab model of the CBL – this isintegrated forwards in time using local-scalemeasured heat and water vapour fluxes, to predictmixed-layer depth, temperature and humidity. Of thefour different CBL growth schemes used, the Tennekesand Driedonks model is found to give the bestperformance. Evaluation of the model performancewith different weightings of heat and water vapourfluxes based on the land use characteristics in theregion suggest that the source area for theboundary-layer sonde measurements is larger thanphysically-based estimates would suggest.

Finally, measured time series of potentialtemperature are used to infer regionally averagedsensible heat fluxes using an integral CBL (ICBL)method. These ICBL fluxes are compared with thosemeasured at the local scale over the three land usetypes that comprise the region of interest. They arefound to be closest to the heat fluxes calculated byappropriately weighting the measured heat fluxes inthe source area calculated for the ICBL. We concludethat the integral CBL budget method providesadequate estimates of regionally-averaged surfaceheat fluxes in a landscape that is characterised bysurface types with distinctly different surfaceenergy budgets.

CBL budget methods CBL (convective boundary layer) Microscale heterogeneity Regional fluxes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr, A. G. and Betts, A. K.: 1997, ‘Radiosonde Boundary Layer Budgets above a Boreal Forest’, J. Geophys. Res. 102(D24), 29,205–29,212.Google Scholar
  2. Barr, A. G., Betts, A. K., Desjardins, R. L., and McPherson, J. I.: 1997, ‘Comparison of Regional Surface Fluxes from Boundary Layer Budgets and Aircraft Measurements above Boreal Forest’, J. Geophys. Res. 102(D24), 29,213–29,218.Google Scholar
  3. Betts, A. K. and Ball, J. H.: 1994, ‘Budget Analysis of FIFE 1987 Sonde Data’, J. Geophys. Res. 99, 3655–3666.Google Scholar
  4. Bottema, M.: 1995, ‘Aerodynamic Roughness Parameters for Homogeneous Building Groups-Part 2: Results’. Document SUB-MESO #23, Ecole Centrale de Nantes, France, 80 pp.Google Scholar
  5. Briggs, G. A.: 1988, ‘Surface Inhomogeneity Effects on Convective Diffusion’, Boundary-Layer Meteorol. 45, 117–135.Google Scholar
  6. Brutsaert, W. and Mawdsley, J. A.: 1976, ‘The Applicability of Planetary Boundary Layer Theory to Calculate Regional Evapotranspiration’, Water Resour. Res. 12, 852–857.Google Scholar
  7. Ching, J. K. S.: 1985, ‘Urban Scale Variations of Turbulence Parameters and Fluxes’, Boundary-Layer Meterol. 33, 336–361.Google Scholar
  8. Cleugh, H. A.: 1991, ‘Predicting Catchment Scale Evaporation Using a Coupled Boundary Layer Growth/Canopy Evaporation Model’, Vegetatio 9, 135–148.Google Scholar
  9. Cleugh, H. A. and Grimmond, C. S. B.: 1993, ‘A Comparison between Measurements of Local-Scale “Suburban” and Areally-Averaged “Urban” Heat and Water Vapour Fluxes. Exchange Processes at the Land Surface for a Range of Space and Time Scales’, International Association of Hydrological Sciences Publication 212, 155–163.Google Scholar
  10. Cleugh, H. A., Briggs, P. R., and Raupach, M. R.: 1997, ‘CBL Budget Estimates of Regional Scale Energy and Water Vapour Fluxes during OASIS’, in D. Jasper and T. Beer (eds.), Abstracts: IAMAS and IAPSO 1997 Joint Assemblies, Melbourne, Australia, 1–9 July 1997. IAMAS-IAPSO Organising Committee, Melbourne, Australia, Abstract IM13YY.Google Scholar
  11. Cooper, D. I. and Eichinger, W. E.: 1994, ‘Structure of the Atmosphere in an Urban Planetary Boundary Layer from Lidar and Radiosonde Observations’, J. Geophys. Res. 99(D11), 22,937–22,948.Google Scholar
  12. Culf, A. D.: 1992, ‘An Application of Simple Models to Sahelian Convective Boundary-Layer Growth’, Boundary-Layer Meteorol. 58, 1–18.Google Scholar
  13. Denmead, O. T., Raupach, M. R., Dunin, F. X., Cleugh, H. A., and Leuning, R.: 1996, ‘Boundary-Layer Budgets for Regional Estimates of Scalar Fluxes’, Global Change Biol. 2, 255–264.Google Scholar
  14. Driedonks, A. G. M.: 1982, ‘Models and Observations of the Growth of the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 23, 283–306.Google Scholar
  15. Godowitch, J. M., Ching, J. K. S., and Clarke, J. F: 1987, ‘Spatial Variation of the Evolution and Structure of the Urban Boundary Layer’, Boundary-Layer Meteorol. 38, 249–272.Google Scholar
  16. Grimmond, C. S. B.: 1996, ‘Dynamically Determined Parameters for Urban Energy and Water Exchange Modelling’, in M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Johnston, C. Maidment, D. Crane, and S. Glendinning (eds.), GIS and Environmental Modeling: Progress and Research Issues, GeoWorld, pp. 305–309.Google Scholar
  17. Grimmond, C. S. B. and Cleugh, H. A.: 1994, ‘A Simple Method to Determine Obukhov Lengths for Suburban Areas’, J. Appl. Meteorol. 33, 435–440.Google Scholar
  18. Grimmond, C. S. B. and Oke, T. R.: 1995, ‘Comparison of Heat Fluxes from Summertime Observations in the Suburbs of Four North American Cities’, J. Appl. Meteorol. 34, 873–889.Google Scholar
  19. Grimmond, C. S. B. and Oke, T. R.: 1999, ‘Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form’, J. Appl. Meteorol. 38, 1262–1292.Google Scholar
  20. Grimmond, C. S. B., Oke, T. R., and Cleugh, H. A.: 1993, ‘The Role of “Rural” in Comparisons of Observed Suburban-Rural Flux Differences. Exchange Processes at the Land Surface for a Range of Space and Time Scales’, International Association of Hydrological Sciences Publication 212, 165–174.Google Scholar
  21. Hildebrand, P. H. and Ackerman, B.: 1984, ‘Urban Effects on the Convective Boundary Layer’, J. Atmos. Sci. 41, 76–91.Google Scholar
  22. Hipps, L. E., Swiatek, E., and Kustas, W. P.: 1994,’ Interactions between Regional Surface Fluxes and the Atmospheric Boundary Layer over a Heterogeneous Watershed', Water Resour. Res. 30, 1387–1392.Google Scholar
  23. Horst, T. W. and Weil, J. C.: 1992, ‘How Far Is Far Enough? The Fetch Requirements for Micrometeorological Measurements’, J. Atmos. Ocean. Technol. 11, 1018–1025.Google Scholar
  24. Leclerc, M. Y. and Thurtell, G.W.: 1990, ‘Footprint Predictions of Scalar Fluxes Using a Markovian Analysis’, Boundary Layer Meteorol. 52, 247–258.Google Scholar
  25. Lhomme, J.-P. and Monteny, B.: 1997, ‘Inferring Regional Surface Fluxes from Convective Boundary Layer Characteristics in the Sahelian Environment’, Water Resour. Res. 33, 2563–2569.Google Scholar
  26. McNaughton, K. G. and Spriggs, T. W.: 1986, ‘A Mixed-Layer Model for Regional Evaporation’, Boundary-Layer Meteorol. 34, 243–263.Google Scholar
  27. Miao, Y. and Cleugh, H. A.: 1997, ‘Modelling Studies of Atmospheric Boundary Layer Responses to Surface Heterogeneity’, in D. Jasper and T. Beer (eds.), Abstracts: IAMAS and IAPSO 1997 Joint Assemblies, Melbourne, Australia, 1–9 July 1997. IAMAS-IAPSO Organising Committee, Melbourne, Australia, Abstract IM13OO.Google Scholar
  28. Munley, W. G. and Hipps, L. E.: 1990, ‘Estimation of Regional Evaporation for a Tall Grass Prairie from Measurements of Properties of the Atmospheric Boundary Layer’, Water Resour. Res. 27, 225–230.Google Scholar
  29. Oke, T. R.: 1976, ‘The Distinction between Canopy and Boundary Layer Urban Heat Islands’, Atmosphere 14, 268–277.Google Scholar
  30. Oke, T. R. and East, C.: 1971, ‘The Urban Boundary Layer in Montréal’, Boundary-Layer Meteorol. 1, 411–437.Google Scholar
  31. Oke T. R., Cleugh H. A., Grimmond, C. S. B, Schmid, H. P., and Roth, M.: 1989, ‘Evaluation of Spatially-Averaged Fluxes of Heat, Mass and Momentum in the Urban Boundary Layer’, Wea. Clim. 9, 14–21.Google Scholar
  32. Pielke, R. A., Cotton, W. R. Walko, R. L. Tremback, C. J., Lyons, W. A., Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. A., Lee, T. J., and Copeland, J. H.: 1992, ‘A Comprehensive Meteorological Modeling System-RAMS’, Meteorol. Atmos. Phys. 49, 69–91.Google Scholar
  33. Raupach, M. R.: 1991, ‘Vegetation-Atmosphere Interaction in Homogeneous and Heterogeneous Terrain: Some Implications of Mixed-Layer Dynamics’, Vegetatio 9, 105–120.Google Scholar
  34. Raupach, M. R.: 1992, ‘Drag and Drag Partition on Rough Surfaces’, Boundary-Layer Meteorol. 60, 375–395.Google Scholar
  35. Raupach, M. R.: 1993, ‘The Averaging of Surface Flux Densities in Heterogeneous Landscapes, Exchange Processes at the Land Surface for a Range of Space and Time Scales’, International Association of Hydrological Sciences Publication 212, 343–355.Google Scholar
  36. Raupach, M. R.: 1994, ‘Simplified Expressions for Vegetation Roughness Length and Zero-Plane Displacement as Functions of Canopy Height and Area Index’, Boundary-Layer Meteorol. 71, 211–216.Google Scholar
  37. Raupach, M. R.: 1995, ‘Corrigenda’, Boundary-Layer Meteorol. 76, 303–304.Google Scholar
  38. Raupach, M. R.: 2000, ‘Combination Theory and Equilibrium Evaporation’, Quart. J. Roy. Meteorol. Soc., in press.Google Scholar
  39. Raupach, M. R., Denmead, O. T., and Dunin, F. X.: 1992, ‘Challenges in Linking Atmospheric CO2 Concentrations to Fluxes at Local and Regional Scales’, Aust. J. Bot. 40, 697–716.Google Scholar
  40. Rayner, K. and Watson, I. D.: 1991, ‘Operational Prediction of Daytime Mixed Layer Heights for Dispersion Modelling’, Atmos. Environ. 25A(8), 1427–1436.Google Scholar
  41. Schmid, H. P.: 1994, ‘Source Areas for Scalars and Scalar Fluxes’, Boundary-Layer Meteorol. 67, 293–318.Google Scholar
  42. Schmid, H. P.: 1997, ‘Experimental Design for Flux Measurements: Matching Scales of Observations and Fluxes’, Agric. For. Meteorol. 87, 179–200.Google Scholar
  43. Schmid, H. P. and Oke, T. R.: 1990, ‘A Model to Estimate Source Are Contributing to the Turbulent Exchange in the Surface Layer over Patchy Terrain’, Quart. J. Roy. Meteorol. Soc. 116, 965–988.Google Scholar
  44. Schmid, H. P., and Oke, T. R.: 1992, ‘Scaling North American Urban Climates by Lines, Lanes, and Rows’, in D. G. Janelle (ed.), Geographical Snapshots of North America, The Guildford Press, New York, 442 pp.Google Scholar
  45. Tanner, B. D. and Greene, J. P.: 1989, ‘Measurements of Sensible Heat and Water Vapor Fluxes Using Eddy Correlation Methods’, Final Report to U.S. Army Dugway Proving Grounds, DAAD 09-87-D-0088, 94 pp.Google Scholar
  46. Tanner, B. D., Swiatek, E., and Greene, J. P. 1993, ‘Density Fluctuations and Use of Krypton Hygrometers in Surface Flux Measurements’, Management of Irrigation and Drainage Systems, ASCE, July 21–23, Park City, Utah, pp. 945–952.Google Scholar
  47. Tapper, N. J.: 1990, ‘Urban Influences on Boundary Layer Temperature and Humidity: Results from Christchurch, New Zealand’, Atmos Environ. 24B, 19–27.Google Scholar
  48. Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion above a Convective Boundary Layer’, J. Atmos. Sci. 30, 558–567.Google Scholar
  49. Tennekes, H. and Driedonks A. G. M.: 1981, ‘Basic Entrainment Equations for the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 20, 515–531.Google Scholar
  50. Webb, E. K., Pearman, G. J., and Leuning, R.: 1980, ‘Correction of Flux Measurements for Density Effects Due to Heat and Water Vapor Transfer’, Quart. J. Roy. Meteorol. Soc. 106, 85–100.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • H. A. Cleugh
    • 1
  • C. S. B. Grimmond
    • 2
  1. 1.CSIRO Land and Water, Pye LaboratoryCanberraAustralia
  2. 2.Atmospheric Science Program,Department of GeographyIndiana UniversityBloomingtonUSA

Personalised recommendations