Altered Integrin Expression and the Malignant Phenotype: The Contribution of Multiple Integrated Integrin Receptors

  • Mary M. Zutter
  • Hong Sun
  • Samuel A. Santoro


The integrins are a family of cell surfaceadhesion receptors that mediate adhesion to eithercomponents of the extracellular matrix or to othercells. The β1 family of integrinsrepresent the major class of cell substrate receptors withspecificities primarily for collagens, laminins, andfibronectins. The role of the integrin family of cellsurface adhesion receptors in normal mammary glandmorphogenesis and the contributions of altered integrinreceptor expression to the invasive and metastaticphenotype have been the primary focus of our lab, aswell as a number of other laboratories. Theα2 β1 integrin is expressed at high levels by normaldifferentiated epithelial cells including those of thenormal breast. Using breast cancer as a model, weevaluated changes in integrin expression in malignancy. We and other investigators made the keyobservation that α2 β1integrin expression is decreased in adenocarcinoma ofthe breast in a manner that correlates with the stage ofdifferentiation. Studies of other adenocarcinomas have yielded similarresults. When the α2 β1integrin was reexpressed in a poorly differentiatedmammary carcinoma that expressed no detectableα2 integrin subunit, a dramatic reversion of malignant phenotype to adifferentiated epithelial phenotype was observed,indicating a critical role forα2β1 expression inmammary gland differentiation. Other laboratories using monoclonal antibodies to competitivelyinhibit α2 β1 integrinadhesion or oncogenic transformation using c-erb2 haveconfirmed the important role of that α2β1 integrin in mammary gland morphogenesis. Re-expression of theα2 β1 integrin alsoresults in upregulation of both the α6and β4 integrin subunits. To determinethe contribution of enhanced α6 andβ4 integrin expression to the abrogation of the malignantphenotype by α2 β1integrin expression, we have now separately re-expressedthe human α6 or β4integrin subunit in the breast cancer model.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. H. Barcellos-Hoff, J. Aggeler, T. G. Ram, and M. J. Bissell (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105: 223-235.Google Scholar
  2. 2.
    C. H. Damsky and Z. Werb (1992). Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr. Opin. Cell. Biol. 4: 772-781.Google Scholar
  3. 3.
    C. D. Roskelley, P. Y. Desprez, and M. J. Bissell (1994). Extra-cellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc. Natl. Acad. Sci. U.S.A. 91: 12378-12382.Google Scholar
  4. 4.
    V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, and M. J. Bissell (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell. Biol. 137 (1): 231-245.Google Scholar
  5. 5.
    E. Ruoslahti (1991). Integrins. J. Clin. Invest. 87: 1-5.Google Scholar
  6. 6.
    R. O. Hynes (1992). Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69: 11-25.Google Scholar
  7. 7.
    S. M. Albelda (1993). Biology of disease. Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab. Invest. 68: 4-17.Google Scholar
  8. 8.
    S. Dedhar, W. S. Argraves, S. Suzuki, E. Ruoslahti E, and M. D. Pierschbacher (1987). Human osteosarcoma cells resistant to detachment by an Arg-Gly-Asp-containing peptide overproduce the fibronectin receptor. J. Cell Biol. 105: 1175-1182.Google Scholar
  9. 9.
    L. F. Reichardt and K. J. Tomaselli (1991). Extracellular matrix molecules and their receptors: function in neural development. Ann. Rev. Neurosci. 14: 531-570.Google Scholar
  10. 10.
    Z. Werb, P. M. Tremble, O. Behrendsten, E. Crowley, and C. H. Damsky (1989). Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J. Cell Biol. 109: 877-899.Google Scholar
  11. 11.
    M. A. Schwartz and K. Denninghoff (1994). αv integrins mediate the rise in intracellular calcium in endothelial cells on fibronectin even though they play a minor role in adhesion. J. Biol. Chem. 269: 11133-11137.Google Scholar
  12. 12.
    P. J. Keely, A. M. Fong, M. M. Zutter, and S. A. Santoro (1995). Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense α2 integrin mRNA in mammary cells. J. Cell. Sci. 108: 595-607.Google Scholar
  13. 13.
    E. U. M. Saelman, P. J. Keely, and S. A. Santoro. (1995). Loss of MDCK cell α2β1 integrin expression results in reduced cyst formation, failure to hepatocyte growth factor/scatter factorinduced branching morphogenesis, and increase apoptosis. J. Cell. Sci. 108: 3531-3540.Google Scholar
  14. 14.
    A. R. Howlett, N. Bailey, C. Damsky, O. W. Petersen, and M. J. Bissell (1995). Cellular growth and survival are mediated by β1 integrins in normal human breast epithelium but not in breast carcinoma. J. Cell. Sci. 108 (5): 1945-1957.Google Scholar
  15. 15.
    F. Berdichevsky, C. Gilbert, M. Shearer, and J. Taylor-Papadimitriou (1991). Collagen-induced morphogenesis of human mammary epithelial cells: The role of the α2β1 integrin. J. Cell. Sci. 102: 437-446.Google Scholar
  16. 16.
    S. A. Santoro and M. M. Zutter (1995). The α2β1 integrin: A collagen receptor on platelets and other cells. Thrombosis and Haemostasis 74: 813-821.Google Scholar
  17. 17.
    M. J. Elices and M. E. Hemler (1989). The human integrin VLA-2 is a collagen receptor on some cells and a collagen/laminin receptor on others. Proc. Natl. Acad. Sci. U.S.A. 86: 9906-9910.Google Scholar
  18. 18.
    L. R. Languino, K. R. Gehlsen, E. A. Wayner, W. G. Carter, E. Engvall, and E. Ruoslahti (1989). Endothelial cells use α2β1 integrin as a laminin receptor. J. Cell Biol. 109: 2455-2462.Google Scholar
  19. 19.
    D. Kirchofer, L. R. Languino, E. Ruoslahti, and M. D. Pierschbacher (1990). α2β1 integrins from different cell types show different binding specificities. J. Biol. Chem. 265: 615-618.Google Scholar
  20. 20.
    M. M. Zutter and S. A. Santoro (1990). Widespread histologic distribution of the α2β1 integrin cell surface collagen receptor. Am. J. Pathol. 137: 113-120.Google Scholar
  21. 21.
    V. Quaranta (1991). Epithelial integrins. Cell. Diff. Devel. 32: 361-366.Google Scholar
  22. 22.
    M. E. Hemler, C. Crouse, and A. Sonnenberg (1989). Association of the VLA subunit α6 with a novel protein. A possible alternative to the common VLA β1 subunit on certain cell lines. J. Biol. Chem. 264: 6529-6535.Google Scholar
  23. 23.
    W. G. Carter, P. Kaur, S. G. Gil, P. J. Gahr, and E. A. Wayner (1990). Distinct functions for integrins α3β1 in focal adhesions and α6β4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes. J. Cell. Biol. 111: 3141-3154.Google Scholar
  24. 24.
    M. A. Stepp, S. Spurr-Michaud, A. Tisdale, J. Elwell, and I. K. Gipson (1990). α6β4 integrin heterodimer is a component of hemidesmosomes. Proc. Natl. Acad. Sci. U.S.A. 87: 8970-8974.Google Scholar
  25. 25.
    J. C. R. Jones, M. A. Kurpakus, H. M. Cooper, and V. Quaranta (1991). A function for the integrin in α6β4 in the hemidesmosome. Cell. Reg. 2: 427-438.Google Scholar
  26. 26.
    A. Sonnenberg, J. Calafat, H. Janssen, H. Daams, L. M. van der Raaij-Hemler, R. Falcioni, S. J. Kennel, J. D. Aplin, J. Baker, and M. Loizidou (1991). Integrin α6β4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J. Cell. Biol. 113: 907-917.Google Scholar
  27. 27.
    J. R. Starkey (1990). Cell matrix interactions during tumor invasion. Cancer Metastasis Rev. 9: 113-123.Google Scholar
  28. 28.
    L. A. Liotta, P. S. Steeg, and W. G. Stetler-Stevenson (1991). Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 64: 327-336.Google Scholar
  29. 29.
    J. Behrens (1993). The role of cell adhesion molecules in cancer invasion and metastasis. Br. Cancer. Res. Treat. 24: 125-184.Google Scholar
  30. 30.
    F. G. Giancotti and F. Mainiero (1994). Integrin-mediated adhesion and signaling tumorigenesis. Biochim. Biophys. Acta. 1198: 47-64.Google Scholar
  31. 31.
    L. C. Plantefaber and R. O. Hynes (1989). Changes in integrin receptors on oncogenically transformed cells. Cell 56: 281-290.Google Scholar
  32. 32.
    S. Dedhar and R. Saulnier (1990). Alterations in integrin receptor expression on chemically transformed human cells: Specific enhancement of laminin and collagen receptor complexes. J. Cell. Biol. 110: 481-489.Google Scholar
  33. 33.
    M. M. Zutter, G. Mazoujian, and S. A. Santoro (1990). Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast. Am. J. Pathol. 137: 863-870.Google Scholar
  34. 34.
    M.M. Zutter, H. R. Krigman, and S. A. Santoro (1993). Altered integrin expression in adenocarcinoma of the breast. Analysis by in situ hybridization. Am. J. Pathol. 142: 1438-1439.Google Scholar
  35. 35.
    G. K. Koukoulis, I. Virtanen, M. Korhonen, L. Laitnen, V. Quaranta, and V. E. Gould (1991). Immunohistochemical localization of integrins in the normal, hyperplastic and neoplastic breast: Correlation with their functions as receptors and cell adhesion molecules. Am. J. Pathol. 139: 787-799.Google Scholar
  36. 36.
    M. Pignatelli, A. M. Hanaby, and G. W. H. Stamp (1991). Low expression of β1, α2, and α3 subunits of VLA integrins in malignant mammary tumors. J. Pathol. 165: 25-32.Google Scholar
  37. 37.
    M. Pignatelli, M. R. Cardillo, A. Hanaby, and G. W. Stamp (1992). Integrins and their accessory adhesion molecules in mammary carcinomas: Loss of polarization in poorly differentiated tumors. Human Pathol. 23: 1159-1166.Google Scholar
  38. 38.
    K. Koretz, P. Schlag, L. Boumsell, and P. Moller (1991). Expression of VLA-α2, VLA-α6, and VLA-β1 chains in normal mucosa and adenomas of the colon, and in colon carcinomas and their liver metastasis. Am. J. Pathol. 138: 741-750.Google Scholar
  39. 39.
    A. Stallmach, B. Von Lampe, H. Matthes, G. Bornhoft, and E. O. Riecken (1992). Diminished expression of integrin adhesion molecules on human colonic epithelial cells during the benign to malignant tumor transformation. Gut 33: 342-346.Google Scholar
  40. 40.
    P. A. Hall, P. Coates, N. R. Lemoine, and M. A. Horton (1991). Characterization of integrin chains in normal and neoplastic human pancreas. J. Pathol. 165: 33-41.Google Scholar
  41. 41.
    H. Bonkoff, U. Stein, and K. Remberger. (1993). Differential expression of α6 and α2 very late antigen integrins in the normal, hyperplastic and neoplastic prostate: Simultaneous demonstration of cell surface receptors and their extracellular ligands. Human Pathol. 24: 243-248.Google Scholar
  42. 42.
    G. W. H. Stamp and M. Pignatelli (1991). Distribution of β1, α2, and α3 integrin chains in basal cell carcinomas. J. Pathol. 163: 307-313.Google Scholar
  43. 43.
    M. Pignatelli (1990). Integrin cell adhesion molecules and colorectal cancer. J. Pathol. 162: 95-97.Google Scholar
  44. 44.
    M. Pignatelli, M. E. F. Smith, and W. F. Bodmer (1991). Low expression of collagen receptors in moderate and poorly differentiated colorectal adenocarcinomas. Brit. J. Cancer 61: 636-638.Google Scholar
  45. 45.
    G. K. Koukoulis, I. Virtanen, R. Moll, V. Quaranta, and V. E. Gould (1993). Immunolocaliz ation of integrins in the normal and neoplastic colonic epithelium. Virchows Arch B Cell Pathol. 63: 373-383.Google Scholar
  46. 46.
    M. Korhonen, L. Laitinen, J. Ylanne, G. K. Koukolis, V. Quaranta, H. Juusela, V. E. Gould, and I. Virtanen (1992). Integrin distributions in renal cell carcinomas of various grades of malignancy. Am. J. Pathol. 141: 1161-1171.Google Scholar
  47. 47.
    R. J. Weinel, A. Rosendahl, K. Neumann, B. Chaloupka, O. Erb, M. Rothmund, and S. A. Santoro (1992). Expression and function of VLA α2, α3, α5, α6 integrin receptors in pancreatic carcinoma. Int. J. Cancer 52: 827-833.Google Scholar
  48. 48.
    L. Damjanovich, S. M. Albelda, S. A. Mette, and C. A. Buck (1992). Distribution of integrin cell adhesion receptors in normal and malignant lung tissue. Am. J. Respir. Cell Mol. Biol. 6: 197-206.Google Scholar
  49. 49.
    J. A. Varner and D. A. Cheresh (1996). Integrins and cancer. Curr. Opin. Cell Biol. 8: 724-730.Google Scholar
  50. 50.
    S. Kajiiji, R. N. Tamura, and V. Quaranta (1989). A novel integrin (αEβ4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. EMBO J. 8: 673-680.Google Scholar
  51. 51.
    A. Sonnenberg, C. J. T. Linders, J. H. Daams, and S. J. Kennel (1990). The α6β1 (VLA-6) and α6β4 protein complexes: tissue distribution and biochemical properties. J. Cell Sci. 96: 207-217.Google Scholar
  52. 52.
    G. P. Gui, C. A. Wells, P. D. Browne, P. Yeomans, S. Jordan, J. R. Puddefoot, G. P. Vinson, and R. Carpenter (1995). Integrin expression in primary breast cancer and its relation to axillary nodal status. Surgery 117: 102-108.Google Scholar
  53. 53.
    A. M. Hanaby, E. E. Gillett, M. Pignatelli, and G. W. Stamp (1993). β1 and β4 integrin expression in methacarn and formalin-fixed material from in situ ductule carcinoma of the breast. J. Pathol. 171: 257-262.Google Scholar
  54. 54.
    K. Friedrichs, P. Ruiz, F. Franke, I. Gille, H. J. Terpe, and B. A. Imhof (1995). High expression level of α6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res. 55: 901-906.Google Scholar
  55. 55.
    J. D. Knox, A. E. Cress, V. Clark, L. Manriquez, K. S. Affinito, B.L. Dalkin, and R.B. Nagle (1994). Differential expression of extracellular matrix molecules and the α6 integrins in the normal and neoplastic prostate. Am. J. Pathol. 145: 167-174.Google Scholar
  56. 56.
    R. B. Nagle, J. Hao, J. D. Knox, B. L. Dalkin, V. Clark, and A. E. Cress (1995). Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am. J. Pathol. 146: 1498-1507.Google Scholar
  57. 57.
    J. J. Korman and S. L. Hrabovsky (1993). Basal cell carcinomas display extensive abnormalities in the hemidesmosome anchoring fibril complex. Exp. Dermatol. 2: 139-144.Google Scholar
  58. 58.
    P. Savoia, L. Trusolino, E. Pepino, O. Cremona, and P. C. Marchisio (1993). Expression and topography of integrins and basement membrane proteins in epidermal carcinomas: basal but not squamous cell carcinomas display loss of α6β4 and BM-600/nicein. J. Invest. Dermatol. 101: 352-358.Google Scholar
  59. 59.
    G. P. H. Gui, C. A. Wells, P. D. Browne, P. Yeomans, S. Jordan, J. R. Puddefoot, G. P. Vinson, and R. Carpenter (1995). Integrin expression in primary breast cancer and its relation to axillary nodal status. Surgery 117: 102-108.Google Scholar
  60. 60.
    G. P. H. Gui, J. R. Puddefoot, G. P. Vinson, C. A. Wells, and R. Carpenter (1995). Modulation of very late activation-2 laminin receptor function in breast cancer metastasis. Surgery 118: 245-250.Google Scholar
  61. 61.
    G. Lindmark, B. Gerdin, L. Pahlman, B. Glimelius, K. Gehlsen, and K. Rubin (1993). Interconnection of integrins alpha 2 and alpha 3 and structure of the basal membrane in colorectal cancer: Relation to survival. Eur. J. Surg. Oncol. 19: 50-60.Google Scholar
  62. 62.
    M. M. Zutter, S. A. Santoro, W. D. Staatz, and Y. L. Tsung (1995). Re-expression of the α2β1 integrin abrogates the malignant phenotype of breast carcinoma cells. Proc. Natl. Acad. Sci. U.S.A. 92: 7411-7415.Google Scholar
  63. 63.
    N. J. Tawil, M. Houde, R. Blacher, F. Esch, L. F. Reichardt, D. C. Turner, and S. Carbonetto (1990). α1β1 integrin heterodimer functions as a dual laminin/collagen receptor in neural cells. Biochemistry 29: 6540-6544.Google Scholar
  64. 64.
    F. Giancotti and E. Ruoslahti (1990). Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 60: 349-350.Google Scholar
  65. 65.
    M. J. Bissell and H. G. Hall (1987). Form and function in the mammary gland: The role of extracellular matrix. The Mammary Gland: Development, Regulation and Function Plenum Press, New York, pp. 97-146.Google Scholar
  66. 66.
    B. D'Souza, F. Berdichevsky, N. Kyprianou, and J. Taylor-Papadimitrious (1993). Collagen-induced morphogenesis and expression of the alpha 2-integrin subunit is inhibited in c-erbB2-transfected human mammary epithelial cells. Oncogene 8 1797-1806.Google Scholar
  67. 67.
    D. A. Lauffenburger and A. F. Horwitz (1996). Cell migration: A physically integrated molecular process. Cell 84: 359-369.Google Scholar
  68. 68.
    A. S. Clarke, M. M. Lotz, C. Chao, and A. M. Mercurio (1995). Activation of the p21 pathway of growth arrest and apoptosis by the β4 integrin cytoplasmic domain. J. Biol. Chem. 270: 22673-22676.Google Scholar
  69. 69.
    C. Choa, M.M. Lotz, A. C. Clarke, and A. M. Mercurio (1996). A function for the integrin α6β4 in the invasive properties of colorectal carcinoma cells. Cancer Res. 56: 4811-4819.Google Scholar
  70. 70.
    L. M. Shaw, C. Chao, U. M. Wewer, and A. M. Mercurio (1996). Function of the integrin α6β1 in metastatic breast carcinoma cells assessed by expression of a dominant-negative receptor. Cancer Res. 56: 959-963.Google Scholar
  71. 71.
    P. E. Hughes, M. W. Renshaw, M. Pfaff, J. Forsyth, V. M. Keivens, M. A. Schwartz, and M. H. Ginsberg (1997). Suppression of integrin activation: A novel function of a Ras/Rafinitiated MAP kinase pathway. Cell 88: 521-530.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Mary M. Zutter
  • Hong Sun
  • Samuel A. Santoro

There are no affiliations available

Personalised recommendations