The Mammary Gland: A Model for Development

  • Charles W. Daniel
  • Gilbert H. Smith


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Hennighausen, G. W. Robinson, K. U. Wagner and W. Liu (1997). Prolactin signaling in mammary gland development. J. Biol. Chem. 272:7567–7569.Google Scholar
  2. 2.
    D. Medina (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. J. Mam. Gland Res. Neoplasia 1:5–20.Google Scholar
  3. 3.
    T. Sakakura, Mammary embryogenesis. In M.C. Neville and C.W. Daniel, (eds.), The Mammary Gland: Development, Regulation, and Function, Plenum Press, New York, pp. 37–66.Google Scholar
  4. 4.
    J. J. Wysolmerski, J. F. McCaughern-Carucci, A. G. Daifotis, A. E. Broadus, and W. M. Philbrick (1995). Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development 121:3539–3547.Google Scholar
  5. 5.
    T. Sakakura, Y. Sakagami, and Y. Nishizuka (1979). Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev. Biol. 72:201–210.Google Scholar
  6. 6.
    C. van Genderen, R. M. Okamura, I. Farinas, R. G. Quo, T. G. Parslow, L. Bruhn, and R. Grosschedl (1994). Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1–deficient mice. Genes Dev. 8:2691–2703.Google Scholar
  7. 7.
    K. Kratochwil, M. Dull, I. Farinas, J. Galceran, and R. Grosschedl (1996). Lefl expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev. 10:1382–1394.Google Scholar
  8. 8.
    V. E. Papaioannou and L. M. Silver (1998). The T-box gene family. Bioessays 20:9–19.Google Scholar
  9. 9.
    M. Bamshad, R. C. Lin, D. J. Law, W. C. Watkins, P. A. Krakowiak, M. E. Moore, P. Franceschini, R. Lala, L. B. Holmes, T. C. Gebuhr, B. G. Bruneau, A. Schinzel, J. G. Seidman, C. E. Seidman, and L. B. Jorde (1997). Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome [published erratum appears in Nat. Genet. 19(1):102]. Nat. Genet. 16:311–315.Google Scholar
  10. 10.
    M. Bamshad, S. Root, and J. C. Carey (1996). Clinical analysis of a large kindred with the Pallister ulnar-mammary syndrome. Am. J. Med. Genet. 65:325–331.Google Scholar
  11. 11.
    J. L. Gomez-Skarmeta, R. D. del Corral, E. de la Calle-Mustienes, D. Ferre-Marco and J. Modolell (1996). Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85:95–105.Google Scholar
  12. 12.
    M. Hammerschmidt, A. Brook, and A. P. McMahon (1997). The world according to hedgehog. Trends Genet. 13:14–21.Google Scholar
  13. 13.
    U. Chung, B. Lanske, K. Lee, E. Li, and H. Kronenberg (1998). The parathyroid hormone/parath yroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. Proc. Natl. Acad. Sci. U.S.A. 95:13030–13035.Google Scholar
  14. 14.
    N. Suda (1997). Parathyroid hormone-related protein (PTHrP) as a regulating factor of endochondral bone formation. Oral Dis. 3:229–231.Google Scholar
  15. 15.
    L. Hennighausen and G. W. Robinson (1998). Think globally, act locally: the making of a mouse mammary gland. Genes Dev. 12:449–455.Google Scholar
  16. 16.
    A. R. Howlett and M. J. Bissell (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol. 2:79–89.Google Scholar
  17. 17.
    C. Brisken, S. Park, T. Vass, J. P. Lydon, B. W. O'Malley and R. A. Weinberg (1998). A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl. Acad. Sci. U.S.A. 95:5076–5081.Google Scholar
  18. 18.
    M. Lewis Cell and Tissue Res. (in press).Google Scholar
  19. 19.
    A. Bosse, A. Zulch, M. B. Becker, M. Torres, J. L. Gomez-Skarmeta, J. Modolell, and P. Gruss (1997). Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mech. Dev. 69:169–181.Google Scholar
  20. 20.
    D. L. Chapman, N. Garvey, S. Hancock, M. Alexiou, S. I. Agulnik, J. J. Gibson-Brown, J. Cebra-Thomas, R. J. Bollag, L. M. Silver and V. E. Papaioannou (1996). Expression of the T-box family genes, Tbx1–Tbx5, during early mouse development. Dev. Dyn. 206:379–390.Google Scholar
  21. 21.
    D. J. Phippard, S. J. Weber-Hall, P. T. Sharpe, M. S. Naylor, H. Jayatalake, R. Maas, I. Woo, D. Roberts-Clark, P. H. Francis-West, Y. H. Liu, R. Maxson, R. E. Hill, and T. C. Dale (1996). Regulation of Msx-1, Msx-2, Bmp-2, and Bmp-4 during foetal and postnatal mammary gland development. Development 122:2729–2737.Google Scholar
  22. 22.
    D.M. Kingsley (1994). The TGF-beta superfamily: New members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8:133–46.Google Scholar
  23. 23.
    M. Kessel and P. Gruss (1990). Murine developmental control genes.Science 249:374–379.Google Scholar
  24. 24.
    Y. Friedmann, C. A. Daniel, P. Strickland, and D. C. W. (1994). Hox genes in normal and neoplastic mouse mammary gland. Cancer Res. 54:5981–5985.Google Scholar
  25. 25.
    Y. Friedmann and C. W. Daniel (1996). Regulated expression of homeobox genes Msx-1 and Msx-2 in mouse mammary gland development suggests a role in hormone action and epithelialstromal interactions. Dev. Biol. 177:347–355.Google Scholar
  26. 26.
    M. E. Dunbar and J. J Wysolmerski (1919). Parathyroid hormone-related protein: A development regulatory molecule necessary for mammary gland development T. Mam. Gland Biol. Neoplasm 4(1) 000–000.Google Scholar
  27. 27.
    J. J. Wysolmerski, W. M. Philbrick, M. E. Dunbar, B. Lanske, H. Kronenberg and A. E. Broadus (1998). Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development 125:1285–1294.Google Scholar
  28. 28.
    T. F. Lane and P. Leder (1997). Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15:2133–XXXX.Google Scholar
  29. 29.
    T. A. Buhler, T. C. Dale, C. Kieback, R. C. Humphreys and J. M. Rosen. (1993). Localization and quantification of Wnt-2 gene expression in mouse mammary development. Dev. Biol. 155:87–96.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Charles W. Daniel
  • Gilbert H. Smith

There are no affiliations available

Personalised recommendations