Journal of Mammary Gland Biology and Neoplasia

, Volume 3, Issue 2, pp 133–150

Roles of Hepatocyte Growth Factor/Scatter Factor and Transforming Growth Factor-β1 in Mammary Gland Ductal Morphogenesis

  • Jesus V. Soriano
  • Michael S. Pepper
  • Lelio Orci
  • Roberto Montesano
Article

Abstract

Epithelial-mesenchymal interactions areresponsible for the unique pattern of ductal branchingmorphogenesis characteristic of the mammary gland. Toinvestigate the factors which control the elongation and branching of lactiferous ducts, wedeveloped an in vitro model of ductal morphogenesis inwhich clonal mouse mammary epithelial cells (TAC-2cells) are grown in collagen gels. In this experimentalsystem, fibroblast conditioned medium (CM)3stimulates the formation of extensively arborizedtubules. The molecule responsible for this tubulogeniceffect was identified as hepatocyte growthfactor/scatter factor (HGF/SF). To determine whether HGF/SF plays arole in mammary gland morphogenesis in vivo, theexpression of HGF/SF and its receptor, cMet, wereanalyzed in the rat mammary gland during pregnancy,lactation, and involution. Levels of HGF/SF and c-Mettranscripts were progressively reduced during pregnancy,were virtually undetectable during lactation, andincreased again during involution. Collectively, these in vitro and in vivo findings suggest thatHGF/SF is a paracrine mediator of mammary gland ductalmorphogenesis. We subsequently investigated the effectof another multifunctional cytokine, namely TGF-beta1, on branching morphogenesis of TAC-2 cells.TGF-β1 had a striking biphasic effect:whereas relatively high concentrations of this cytokineinhibited colony formation, lower concentrationsstimulated extensive elongation and branching of epithelial cords.Taken together, these studies indicate that HGF/SF is astromal-derived paracrine mediator of mammary ductalmorphogenesis, and that when present at lowconcentrations, TGF-β1 can contribute to thisprocess.

BRANCHING MORPHOGENESIS CORTICOSTEROIDS EPITHELIAL-MESENCHYMAL INTERACTIONS EXTRACELLULAR MATRIX HEPATOCYTE GROWTH FACTOR/SCATTER FACTOR LUMEN FORMATION MAMMARY GLAND c-MET TRANSFORMING GROWTH FACTOR-β 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Daniel and G. B. Silberstein. (1987). Postnatal development of the rodent mammary gland. In M. C. Neville and C. W. Daniel (eds.), The Mammary Gland. Development, Regulation and Function Plenum Press, New York and London, pp. 3-36.Google Scholar
  2. 2.
    F. Borellini and T. Oka (1989). Growth control and differentiation in mammary epithelial cells. Environ. Health Perspect. 80: 85-99.Google Scholar
  3. 3.
    T. Sakakura (1991). New aspects of stroma-parenchyma relations in mammary gland differentiation. Int. Rev. Cytol. 125: 165-202.Google Scholar
  4. 4.
    S. Z. Haslam (1991). Stromal-epithelial interactions in normal and neoplastic mammary gland. In M. Lippman and R. Dickson (eds.), Regulatory Mechanisms in Breast Cancer Kluwer Academic Publishers, Boston, pp. 401-420.Google Scholar
  5. 5.
    G. R. Cunha and Y. K. Hom (1996). Role of mesenchymal-epithelial interactions in mammary gland development. J. Mam. Gland Biol. Neoplasia 1: 21-35.Google Scholar
  6. 6.
    T. Woodward, J. Xie, and S. Z. Haslam (1998). The role of mammary stroma in modulating the proliferative response to ovarian hormones in the normal mammary gland. J. Mam. Gland Biol. Neoplasia 3: 117-132.Google Scholar
  7. 7.
    Y. J. Topper and S. Freeman (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60: 1049-1106.Google Scholar
  8. 8.
    W. Imagawa, G. K. Bandyopadhyay, and S. Nandi (1990). Regulation of mammary epithelial cell growth in mice and rats. Endocrine Rev. 11: 494-523.Google Scholar
  9. 9.
    K. Kratochwil (1969). Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland in the mouse. Devel. Biol. 20: 46-71.Google Scholar
  10. 10.
    M. H. Barcellos-Hoff, J. Aggeler, and M. J. Bissell (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105: 223-235.Google Scholar
  11. 11.
    C. H. Streuli and M. J. Bissell (1990). Expression of extracellular matrix components is regulated by substratum. J. Cell Biol. 110: 1405-1415.Google Scholar
  12. 12.
    J. Aggeler, J. Ward, L. M. Blackie, M. H. Barcellos Hoff, C. H. Streuli, and M. J. Bissell (1991). Cytodifferentiation of mouse mammary epithelial cells cultured on a reconstituted basement membrane reveals striking similarities to development in vivo. J. Cell Sci. 99: 407-417.Google Scholar
  13. 13.
    M. C. Neville, L. Stahl, A. Brozo, and J. Lowe-Lieber (1991). Morphogenesis and secretory activity of mouse mammary cultures on EHS biomatrix. Protoplasma 163: 1-8.Google Scholar
  14. 14.
    C. H. Streuli, N. Bailey, and M. J. Bissell (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J. Cell Biol. 115: 1383-1395.Google Scholar
  15. 15.
    J. Yang, J. Richards, R. Guzman, W. Imagawa, and S. Nandi (1980). Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. U.S.A. 77: 2088-2092.Google Scholar
  16. 16.
    D. C. Bennett (1980). Morphogenesis of branching tubules in cultures of cloned mammary epithelial cells. Nature 285: 657-659.Google Scholar
  17. 17.
    E. J. Ormerod and P. S. Rudland (1982). Mammary gland morphogenesis in vitro: formation of branched tubules in collagen gels by a cloned rat mammary cell line. Devel. Biol. 91: 360-375.Google Scholar
  18. 18.
    K. G. Danielson, C. J. Oborn, E. M. Durban, J. S. Butel, and D. Medina (1984). Epithelial mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc. Natl. Acad. Sci. U.S.A. 81: 3756-3760.Google Scholar
  19. 19.
    I. Fialka, H. Schwarz, E. Reichmann, M. Oft, M. Busslinger, and H. Beug (1996). The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J. Cell Biol. 132: 1115-1132.Google Scholar
  20. 20.
    J. Enami, S. Enami, and M. Koga (1983). Growth of normal and neoplasic mouse mammary epithelial cells in primary culture: stimulation by conditioned medium from mouse mammary fibroblasts. Gann 74: 845-853.Google Scholar
  21. 21.
    T. Kanazawa and H. L. Hosick (1992). Transformed growth phenotype of mouse mammary epithelium in primary culture induced by specific fetal mesenchymes. J. Cell. Physiol. 153: 381-391.Google Scholar
  22. 22.
    R. B. Owens, H. S. Smith, and A. J. Hackett (1974). Epithelial cell cultures from normal glandular tissue of mice. J. Natl. Cancer Inst. 53: 261-269.Google Scholar
  23. 23.
    G. H. Hall, D. A. Farson, and M. J. Bissell (1982). Lumen formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture. Proc. Natl. Acad. Sci. U.S.A. 79: 4672-4676.Google Scholar
  24. 24.
    G. David, B. Van der Schueren, and M. Bernfield (1981). Basal lamina formation by normal and transformed mouse mammary epithelial cells duplicated in vitro. J. Natl. Cancer Inst. 67: 719-724.Google Scholar
  25. 25.
    J. V. Soriano, M. S. Pepper, T. Nakamura, L. Orci, and R. Montesano (1995). Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci. 108: 413-430.Google Scholar
  26. 26.
    E. Gherardi, J. Gray, M. Stoker, M. Perryman, and R. A Furlong (1989). Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc. Natl. Acad. Sci. U.S.A. 86: 5844-5848.Google Scholar
  27. 27.
    J. S. Rubin, A. M. Chan, D. P. Bottaro, W. H. Burgess, W. G. Taylor, A. C. Cech, D. W. Hirschfield, J. Wong, T. Miki, P. W. Finch, and S. A. Aaronson (1991). A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor. Proc. Natl. Acad. Sci. U.S.A. 88: 415-419.Google Scholar
  28. 28.
    R. Zarnegar and G. K. Michalopoulos (1995). The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J. Cell Biol. 129: 1177-1180.Google Scholar
  29. 29.
    E. M. Rosen, S. K. Nigam, and I. D. Goldberg (1994). Scatter factor and the c-Met receptor: a paradigm for mesenchymal/epithelial interaction. J Cell Biol. 127: 1783-1787.Google Scholar
  30. 30.
    K. Matsumoto and T. Nakamura (1996). Emerging multipotent aspects of hepatocyte growth factor. J. Biochem. (Tokyo) 119: 591-600.Google Scholar
  31. 31.
    L. Tamagnone and P. M. Comoglio (1997). Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors. Cytokine Growth Factor Rev. 8: 129-142.Google Scholar
  32. 32.
    R. Montesano, G. Schaller, and L. Orci (1991). Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell 66: 697-711.Google Scholar
  33. 33.
    R. Montesano, K. Matsumoto, T. Nakamura, and L. Orci (1991). Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67: 901-908.Google Scholar
  34. 34.
    D. P. Bottaro, J. S. Rubin, D. L. Faletto, A. M. Chan, T. E. Kmiecik, G. F. Vande Woude, and S. A. Aaronson (1991). Identification of the hepatocyte growth factor receptor as the c-Met proto-oncogene product. Science 251: 802-804.Google Scholar
  35. 35.
    L. Naldini, E. Vigna, R. P. Narsimhan, G. Gaudino, R. Zarnegar, G. K. Michalopoulos, and P. M. Comoglio (1991). Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene 6: 501-504.Google Scholar
  36. 36.
    K. M. Weidner, M. Sachs, and W. Birchmeier (1993). The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J. Cell Biol. 121: 145-154.Google Scholar
  37. 37.
    H. Zhu, M. A. Naujokas, E. D. Fixman, K. Torossian, and M. Park (1994). Tyrosine 1356 in the carboxyl-terminal tail of the HGF/SF receptor is essential for the transduction of signals for cell motility and morphogenesis. J. Biol. Chem. 269: 29943-29948.Google Scholar
  38. 38.
    I. Royal, T. M. Fournier, and M. Park. (1997). Differential requirement of Grb2 and PI3-kinase in HGF/SF-induced cell motility and tubulogenesis. J. Cell. Physiol. 173: 196-201.Google Scholar
  39. 39.
    K. M. Weidner, S. Di Cesare, M. Sachs, V. Brinkmann, J. Behrens, and W. Birchmeier (1996). Interaction between Gab1 and the c-Met tyrosine kinase is responsible for epithelial morphogenesis. Nature 384: 173-176.Google Scholar
  40. 40.
    K. S. Zettl, M. D. Sjaastad, P. M. Riskin, G. Parry, T. E. Machen, and G. L. Firestone (1992). Glucocorticoid-induced formation of tight junctions in mouse mammary epithelial cells in vitro. Proc. Natl. Acad. Sci. U.S.A. 89: 9069-9073.Google Scholar
  41. 41.
    M. D. Sjaastad, K. S. Zettl, G. Parry, G. L. Firestone, and T. E. Machen (1993). Hormonal regulation of the polarized function and distribution of Na/H exchange and Na/HCO3 cotransport in cultured mammary epithelial cells. J. Cell Biol. 122: 589-600.Google Scholar
  42. 42.
    A. A. Donjacour and G. R. Cunha (1990). Stromal regulation of epithelial function. In M. Lippman and R. Dickson (eds.), Regulatory Mechanisms in Breast Cancer Kluwer Academic Publishers, Boston, pp. 335-364.Google Scholar
  43. 43.
    F. Berdichevsky, D. Alford, B. D'Souza, and J. Taylor-Papadimitriou (1994). Branching morphogenesis of human mammary epithelial cells in collagen gels. J. Cell Sci. 107: 3557-3568.Google Scholar
  44. 44.
    B. Niranjan, L. Buluwela, J. Yant, A. Atherton, D. Phippard, B. A. Gusterson, and T. Kamalati (1995). HGF/SF: a potent cytokine for mammary growth, morphogenesis and development. Development 121: 2897-2908.Google Scholar
  45. 45.
    Y. Yang, E. Spitzer, D. Meyer, M. Sachs, C. Niemann, G. Hartmann, K. M. Weidner, C. Birchmeier, and W. Birchmeier (1995). Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol. 131: 215-226.Google Scholar
  46. 46.
    E. U. Saelman, P. J. Keely, and S. A. Santoro (1995). Loss of MDCK cell alpha 2 beta 1 integrin expression results in reduced cyst formation, failure of hepatocyte growth factor/scatter factor-induced branching morphogenesis, and increased apoptosis. J. Cell Sci. 108: 3531-3540.Google Scholar
  47. 47.
    A. L. Pollack, A. I. M. Barth, Y. Altschuler, W. J. Nelson, and K. E. Mostov (1997). Dynamics of β-catenin interactions with APC protein regulate epithelial tubulogenesis. J. Cell Biol. 137: 1651-1662.Google Scholar
  48. 48.
    M. S. Pepper, K. Matsumoto, T. Nakamura, L. Orci, and R. Montesano (1992). Hepatocyte growth factor increases urokinase-type plasminogen activator (u-PA) and u-PA receptor expression in Madin-Darby canine kidney epithelial cells. J. Biol. Chem. 267: 20493-20496.Google Scholar
  49. 49.
    S. E. Dunsmore, J. S. Rubin, S. O. Kovacs, M. Chedid, W. C. Parks, and H. G. Welgus (1996). Mechanisms of hepatocyte growth factor stimulation of keratinocyte metalloproteinase production. J. Biol. Chem. 271: 24576-24582.Google Scholar
  50. 50.
    M. Jeffers, S. Rong, and G. F. Vande Woude (1996). Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-met signaling in human cells concomitant with induction of the urokinase proteolysis network. Mol. Cell. Biol. 16: 1115-1125.Google Scholar
  51. 51.
    M. E. Zeigler, N. T. Dutcheshen, D. F. Gibbs, and J. Varani (1996). Growth factor-induced epidermal invasion of the dermis in human skin organ culture: expression and role of matrix metalloproteinases. Invasion Metastasis 16: 11-18.Google Scholar
  52. 52.
    M. S. Pepper, J. V. Soriano, P. A. Menoud, A. P. Sappino, L. Orci, and R. Montesano (1995). Modulation of hepatocyte growth factor and c-Met in the rat mammary gland during pregnancy, lactation, and involution. Exp. Cell Res. 219: 204-210.Google Scholar
  53. 53.
    L. Ossowski, D. Biegel, and E. Reich (1979). Mammary plasminogen activator: correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell 16: 929-940.Google Scholar
  54. 54.
    C. J. Sympson, R. S. Talhouk, C. M. Alexander, J. R. Chin, S. M. Clift, M. J. Bissell, and Z. Werb (1994). Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125: 681-693.Google Scholar
  55. 55.
    M. Peaker (1978). Ion and water transport in the mammary gland. In B. L. Larson (ed.) Lactation. A Comprehensive Treatise. Volume IV, Academic Press, Inc., New York and London, pp. 437-462.Google Scholar
  56. 56.
    A. Nusrat, C. A. Parkos, A. E. Bacarra, P. J. Godowski, C. Delp Archer, E. M. Rosen, and J. L. Madara (1994). Hepatocyte growth factor/scatter factor effects on epithelia. Regulation of intercellular junctions in transformed and nontransformed cell lines, basolateral polarization of c-Met receptor in transformed and natural intestinal epithelia, and induction of rapid wound repair in a transformed model epithelium. J. Clin. Invest. 93: 2056-2065.Google Scholar
  57. 57.
    A. B. Tuck, M. Park, E. E. Sterns, A. Boag, and B. E. Elliot (1996). Coexpression of hepatocyte growth factor and receptor (met) in human breast carcinoma. Am. J. Pathol. 148: 225-232.Google Scholar
  58. 58.
    L. Jin, A. Fuchs, S. J. Schnitt, Y. Yao, J. Ansamma, K. Lamszus, M. Park, I. D. Goldberg, and E. M. Rosen (1997). Expression of scatter factor and c-met receptor in benign and malignant breast tissue. Cancer 79: 749-760.Google Scholar
  59. 59.
    Y. Wang, A. C. Selden, N. Morgan, G. W. Stamp, and H. J. Hodgson (1994). Hepatocyte growth factor/scatter factor expression in human mammary epithelium. Am. J. Pathol. 144: 675-682.Google Scholar
  60. 60.
    N. Rahimi, E. Tremblay, L. McAdam, M. Park, R. Schwall, and B. Elliott (1996). Identification of a hepatocyte growth factor autocrine loop in a murine mammary carcinoma. Cell Growth Differ. 7: 263-270.Google Scholar
  61. 61.
    H. Takayama, W. J. LaRochelle, R. Sharp, T. Otsuka, P. Kriebel, M. Anver, S. A. Aaronson, and G. Merlino (1997). Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc. Natl. Acad. Sci. U.S.A. 94: 701-706.Google Scholar
  62. 62.
    T. J. Liang, A. E. Reid, R. Xavier, R. D. Cardiff, and T. C. Wang (1996). Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J. Clin. Invest. 97: 2872-2877.Google Scholar
  63. 63.
    Y. Yao, L. Jin, A. Fuchs, A. Joseph, H. M. Hastings, I. D. Goldberg, and E. M. Rosen (1996). Scatter factor protein levels in human breast cancers: clinicopathologi cal and biological correlations. Am. J. Pathol. 149: 1707-1717.Google Scholar
  64. 64.
    J. Nagy, G. W. Curry, K. J. Hillan, I. C. McKay, E. Mallon, A. D. Purushotham, and W. D. George (1996). Hepatocyte growth factor/scatter factor expression and c-met in primary breast cancer. Surg. Oncol. 5: 15-21.Google Scholar
  65. 65.
    J. Yamashita, M. Ogawa, S. Yamashita, K. Nomura, M. Kuramoto, T. Saishoji, and S. Shin (1994). Immunoreactive hepatocyte growth factor is a strong and independent predictor of recurrence and survival in human breast cancer. Cancer Res. 54: 1630-1633.Google Scholar
  66. 66.
    J. A. Barnard, R. M. Lyons, and H. L. Moses (1990). The cell biology of transforming growth factor-β. Biochim. Biophys. Acta 1032: 79-87.Google Scholar
  67. 67.
    J. Massagué (1990). The transforming growth factor-βfamily. Ann. Rev. Cell Biol. 6: 597-641.Google Scholar
  68. 68.
    A. B. Roberts and M. B. Sporn (1990). The transforming growth factor-βs. In M. B. Sporn and A. B. Roberts (eds.), Peptide Growth Factors and Their Receptors (Vol. I), Springer-Verlag, Berlin, pp. 419-472.Google Scholar
  69. 69.
    L. Attisano, J. L. Wrana, F. Lopez Casillas, and J. Massagué (1994). TGF-βreceptors and actions. Biochim. Biophys. Acta 1222: 71-80.Google Scholar
  70. 70.
    J. Massagué and K. Polyak (1995). Mammalian antiproliferative signals and their targets. Curr.Opin. Genet. Devel. 5: 91-96.Google Scholar
  71. 71.
    D. A. Lawrence (1996). Transforming growth factor-β: a general review. Eur. Cytokine Netw. 7: 363-374.Google Scholar
  72. 72.
    J. Plouet and D. Gospodarowicz (1989). Transforming growth factor-β1, positively modulates the bioactivity of fibroblast growth factor on corneal endothelial cells. J. Cell. Physiol. 141: 392-399.Google Scholar
  73. 73.
    E. J. Battegay, E. W. Raines, R. A. Seifert, D. F. Bowen Pope, and R. Ross (1990). TGF-βinduces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63: 515-524.Google Scholar
  74. 74.
    Y. Myoken, M. Kan, G. H. Sato, W. L. McKeehan, and J. D. Sato (1990). Bifunctional effects of transforming growth factor-β (TGF-β) on endothelial cell growth correlate with phenotypes of TGF-βbinding sites. Exp. Cell Res. 191: 299-304.Google Scholar
  75. 75.
    M. S. Pepper, J. D. Vassalli, L. Orci, and R. Montesano (1993). Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis. Exp. Cell Res. 204: 356-363.Google Scholar
  76. 76.
    P. J. Miettinen, R. Ebner, A. R. Lopez, and R. Derynck (1994). TGF-βinduced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127: 2021-2036.Google Scholar
  77. 77.
    C. Nathan and M. Sporn (1991). Cytokines in context. J. Cell Biol. 113: 981-986.Google Scholar
  78. 78.
    Z. Feng, A. Marti, B. Jehn, H. J. Altermatt, G. Chicaiza, and R. Jaggi (1995). Glucocorticoid and progesterone inhibit involution and progammed cell death in the mouse mammary gland. J. Cell Biol. 131: 1095-1103.Google Scholar
  79. 79.
    G. R. Merlo, F. Basolo, L. Fiore, L. Duboc, and N. E. Hynes (1995). p53-dependent and p53-independent activation of apoptosis in mammary epithelial cells reveals a survival function of EGF and insulin. J. Cell Biol. 128: 1185-1196.Google Scholar
  80. 80.
    J. V. Soriano, L. Orci, and R. Montesano (1996). TGF-β1 induces morphogenesis of branching cords by cloned mammary epithelial cells at subpicomolar concentrations. Biochem. Biophys. Res. Commun. 220: 879-885.Google Scholar
  81. 81.
    J. A. Madri, B. M. Pratt, and A. M. Tucker (1988). Phenotypic modulation of endothelial cells by transforming growth factor-βdepends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106: 1375-1384.Google Scholar
  82. 82.
    R. Montesano and L. Orci (1988). Transforming growth factor β stimulates collagen-matrix contraction by fibroblasts: implications for wound healing. Proc. Natl. Acad. Sci. U.S.A. 85: 4894-4897.Google Scholar
  83. 83.
    S. Rasmussen and A. Rapraeger (1988). Altered structure of the hybrid cell surface proteoglycan of mammary epithelial cells in response to transforming growth factor-β. J. Cell Biol. 107: 1959-1967.Google Scholar
  84. 84.
    M. Hosobuchi and M. R. Stampfer (1989). Effects of transforming growth factor-β on growth of human mammary epithelial cells in culture. In Vitro Cell. Devel. Biol. 25: 705-713.Google Scholar
  85. 85.
    K. Takahashi, K. Suzuki, and T. Ono (1990). Loss of growth inhibitory activity of TGF-β toward normal human mammary epithelial cells grown within collagen gel matrix. Biochem. Biophys. Res. Commun. 173: 1239-1247.Google Scholar
  86. 86.
    P. Martikainen, N. Kyprianou, and J. T. Isaacs (1990). Effect of transforming growth factor-β1 on proliferation and death of rat prostatic cells. Endocrinology 127: 2963-2968.Google Scholar
  87. 87.
    S. D. Robinson, G. B. Silberstein, A. B. Roberts, K. C. Flanders, and C. W. Daniel (1991). Regulated expression and growth inhibitory effects of transforming growth factor-β isoforms in mouse mammary gland development. Development 113: 867-878.Google Scholar
  88. 88.
    G. B. Silberstein, K. C. Flanders, A. B. Roberts, and C. W. Daniel (1992). Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-β1. Devel. Biol. 152: 354-362.Google Scholar
  89. 89.
    G. B. Silberstein and C.W. Daniel (1987). Reversible inhibition of mammary gland growth by transforming growth factor-β. Science 237: 291-293.Google Scholar
  90. 90.
    C. W. Daniel, G. B. Silberstein, K. Van Horn, P. Strickland, and S. Robinson (1989). TGF-β1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Devel. Biol. 135: 20-30.Google Scholar
  91. 91.
    D. F. Pierce, Jr., M. D. Johnson, Y. Matsui, S. D. Robinson, L. I. Gold, A. F. Purchio, C. W. Daniel, B. L. M. Hogan, and H. L. Moses (1993). Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1. Genes Devel. 7: 2308-2317.Google Scholar
  92. 92.
    C. Jhappan, A. G. Geiser, E. C. Kordon, D. Bagheri, L. Hennighausen, A. B. Roberts, G. H. Smith, and G. Merlino (1993). Targeting expression of a transforming growth factor-β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 12: 1835-1845.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Jesus V. Soriano
  • Michael S. Pepper
  • Lelio Orci
  • Roberto Montesano

There are no affiliations available

Personalised recommendations