Growth Factors, Apoptosis, and Survival of Mammary Epithelial Cells

  • Edward C. Rosfjord
  • Robert B. Dickson


Programmed cell death (apoptosis) occursregularly during normal growth and development of themammary gland. One of the most dramatic examples ofapoptosis is evident during the remodeling of the breast that accompanies postlactational involution.Transgenic mouse models have demonstrated thatoverexpression of polypeptides such as transforminggrowth factor alpha (TGFα)3 and insulinlike growth factor I (IGF-I) can block this remodeling, suggestingthat these growth factors may be acting as survivalfactors for the mammary epithelium. In contrast,transgenic mice that overexpress the growth inhibitor transforming growth factor beta (TGF-β)show increased apoptosis in the mammary epitheliumthroughout mammary development, suggestive of amechanism working to counterbalance the survivalfactors. Experiments with mammary epithelial cell lines cultured invitro have confirmed that these growth factors canindeed regulate apoptosis and survival in mammaryepithelial cells; EGF, IGF-I, and basic fibroblastgrowth factor (bFGF) act as survival factors formammary epithelial cells, while TGF-β induces theirdeath. In breast cancer, cytotoxic drugs and hormoneablation increase the expression of TGF-β, which may function to induce cell death by eitherparacrine or autocrine mechanisms. Lastly, although ithas very limited expression in the breast, TNFαhas been shown to be effective in the rapid, direct induction of cell death in breast cancer celllines. Together, these studies describe a complexdynamic pattern of cell death-inducing and survivalfactors that promote the development of the maturemammary gland and that rapidly remodel the tissue afterlactation.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. R. Kerr, A. H. Wylie, and A. R. Currie (1972). Apoptosis: A basic biological phenomenon with wide ranging implications in tissue kinetics. Brit. J. Cancer 26:239–257.Google Scholar
  2. 2.
    A. H. Wylie, J. F. R. Kerr, and A. R. Currie (1980). Cell death, the significance of apoptosis. Int. Rev. Cytol. 68:251–306.Google Scholar
  3. 3.
    D. J. P. Ferguson and T. J. Anderson (1981). Ultrastructural observations on cell death by apoptosis in the “resting” human breast. Virchows Arch Path. Anat. 393:193–203.Google Scholar
  4. 4.
    D. J. P. Ferguson and T. J. Anderson (1981). Morphological evaluation of cell turnover in relation to the menstrual cycle in the “resting” human breast. Brit. J. Cancer 44:177–181.Google Scholar
  5. 5.
    T. J. Anderson, D. J. P. Ferguson, and G. M. Raab (1982). Cell turnover in the “resting” human breast: Influence of parity, contraceptive pill, age and laterality. Brit. J. Cancer 46: 376–382.Google Scholar
  6. 6.
    N. I. Walker, R. E. Bennet, and J. F. R. Kerr (1989). Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185:19–32.Google Scholar
  7. 7.
    R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development 115:49–58.Google Scholar
  8. 8.
    R. Strange, R. R. Friis, L. T. Bemis, and F. J. Geske (1995). Programmed cell death during mammary gland involution. Methods Cell Biol. 46:355–368.Google Scholar
  9. 9.
    R. Pinkas-Kramarski, I. Alroy, and Y. Yarden (1997). ErbB receptors and EGF-like Ligands: Cell lineage determination and oncogenesis through combinatorial signaling. J. Mam. Gland Biol. Neoplasia 2:97–107.Google Scholar
  10. 10.
    J. A. Schroeder and D. C. Lee (1998). Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ. 9:451–464.Google Scholar
  11. 11.
    J. Sebastian, R. G. Richards, M. P. Walker, J. F. Wiesen, Z. Werb, R. Derynck, Y. K. Hom, R. R. Cunha, and R. P. DiAugustine (1998). Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ. 9:777–785.Google Scholar
  12. 12.
    G. Carpenter (1980). Epidermal growth factor is a major growth promoting agent in human milk. Science 210:198–199.Google Scholar
  13. 13.
    J. M. Beardmore and R. C. Richards (1983). Concentrations of epidermal growth factor in mouse milk throughout lactation. J. Endocrinol. 96:287–292.Google Scholar
  14. 14.
    N. J. Kenney and R. B. Dickson (1996). Growth factor an sex steroid interactions in breast cancer. J. Mam. Gland Biol. Neoplasia 1:189–198.Google Scholar
  15. 15.
    E. P. Sandgren, J. A. Schroeder, T. H. Qui, R. D. Palmiter, R. I. Brinster, and D. C. Lee (1995). Inhibition of mammary gland involution is associated with TGFα but not c-myc induced tumorigenesis in transgenic mice. Cancer Res. 55:3915–3927.Google Scholar
  16. 16.
    G. D. Smith, R. Sharp, E. C. Kordon, C. Jhappan, and G. Merlino (1995). Transforming growth factor α promotes mammary tumorigenesis through selective survival and growth of secretory epithelial cells. Am J. Pathol. 147:1081–1096.Google Scholar
  17. 17.
    G. R. Merlo, D. Graus-Porta, N. Cella, B. M. Marte, D. Taverna, and N. E. Hynes (1996). Growth, differentiation and survival of HC11 mammary epithelial cells: Diverse effects of receptor tyrosine kinase-activating peptide growth factors. Eur. J. Cell Biol. 70:97–105.Google Scholar
  18. 18.
    L. T. Amundadottir, S. J. Nass, G. J. Berchem, M. D. Johnson, and R. B. Dickson (1996). Cooperation of TGFα and c-Myc mouse mammary tumorigenesis: coordinated stimulation of growth and suppression of apoptosis. Oncogene 13:757–765.Google Scholar
  19. 19.
    S. J. Nass, M. Li, L. T. Amundadottir, P. A. Furth, and R. B. Dickson (1996). Role for Bcl-xL in the regulation of apoptosis by EGF and TGFβ1 in c-myc overexpressing mammary epithelial cells. Biochem. Biophys. Res. Commun. 227: 248–256.Google Scholar
  20. 20.
    I. M. Krane and P. Leder (1996). NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 12:1781–1788.Google Scholar
  21. 21.
    E. J. Ormerod and P. S. Rudland (1984). Cellular composition and organization of ductal buds in developing rat mammary glands: Evidence for morphological intermediates between epithelial and myoepithelial cells. Am. J. Anat. 170:631–652.Google Scholar
  22. 22.
    N. J. Kenney, R. Huang, G. Johnson, D. Okamura, W. Matheny, G. Plowman, G. H. Smith, D. S. Salomon, and E. D. Adamson (1995). Detection and localization of amphiregulin and cripto-1 in the developing mouse mammary gland. Mol. Reprod. Dev. 4:277–286.Google Scholar
  23. 23.
    P. W. Cook, M. Piepkorn, C. H. Clegg, G. D. Plowman, J. M. DeMay, J. R. Brown, and M. R. Pittelkow (1997). Transgenic expression of the human amphiregulin gene induces a psoriasis-like phenotype. J. Clin. Invest. 100:2286–2294.Google Scholar
  24. 24.
    K. J. Fowler, F. Walker, W. Alexander, M. L. Hibbs, E. C. Nice, R. M. Bohmer, G. B. Mann, C. Thumwood, R. Maglitto, J. A. Danks, R. Chetty, A.W. Burgess, and A.R. Dunn. (1995). A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. Proc. Natl. Acad. Sci. U.S.A. 92: 1465–1469.Google Scholar
  25. 25.
    M. A. Helmrath, C. E. Shin, C. R. Erwin, and B. W. Warner (1998). The EGF-receptor axis modulates enterocyte apoptosis during intestinal adaptation. J. Surg. Res. 77:17–22.Google Scholar
  26. 26.
    D. I. Kitsberg and P. Leder (1996). Keratinocyte growth factor induces mammary gland and prostatic hyperplasia and mammary adenocarcinoma in transgenic mice. Oncogene 13: 2507–2515.Google Scholar
  27. 27.
    C. G. Prosser (1996). Insulin-like growth factors in milk and mammary gland. J. Mam. Gland Biol. Neoplasia 1:297–306.Google Scholar
  28. 28.
    D. L. Kleinberg (1998). Role of IGF-1 in normal mammary development. Br. Cancer Res. Treatment 47:201–208.Google Scholar
  29. 29.
    G. L. Francis, F.M. Upton, F.J. Ballard, K.A. Mcneil, and J.C. Wallace (1988). Insulin-like growth factors 1 and 2 in bovine colostrum. Biochem. J. 251:95–103.Google Scholar
  30. 30.
    E. Tonner, L. Quarrie, M. Travers, M. Barber, A. Logan, C. Wilde, and D. Flint (1995). Does an IGF-binding protein (IGFBP) present in involuting rat mammary gland regulate apoptosis? Prog. Growth Factor Res. 6:409–414Google Scholar
  31. 31.
    E. Tonner, M. C. Barber, M. T. Travers, A. Logan, and D. J. Flint (1997). Hormonal control of insulin-like growth factorbinding protein-5 production in the involuting mammary gland of the rat. Endocrinology 138:5101–5107.Google Scholar
  32. 32.
    J. A. Mol, P. J. Selman, E. P. Sprang, J. W. van Neck, and M. A. Oosterlaken-Dijksterhuis (1997). The role of progestins, insulin-like growth factor (IGF) and IGF-binding proteins in the normal and neoplastic mammary gland of the bitch: A review. J. Reprod. Fertil. Suppl. 51:339–344.Google Scholar
  33. 33.
    R. S. Guenette and M. Tenniswood (1995). The role of insulinlike growth factor binding proteins (IGFBPs) in regulating active cell death in regressing rat prostate and mammary gland. J. Cell. Biochem. 19B:280.Google Scholar
  34. 34.
    T. Nickerson, M. Pollak, and H. Huynh (1998). Castration-induced apoptosis in the rat ventral prostate is associated with increased expression of genes encoding insulin-like growth factor binding proteins 2,3,4, and 5. Endocrinology 139:807–810.Google Scholar
  35. 35.
    X. J. Liu, M. Malkowski, Y. Guo, G. F. Erickson, S. Shimasaki, and F. Ling (1993). Development of specific antibodies to insulin-like growth factor binding proteins (IGFBP-2 to-6): Analysis of IGFBP production by rat granulosa cells. Endocrinology 132:1176–1183.Google Scholar
  36. 36.
    I. D. Phillips, G. P. Becks, A. Logan, J. F. Wang, C. Smith, and D. J. Hill (1994). Altered expression of insulin-like growth factor-1 (IGF-1) and IGF binding proteins during rat thyroid hyperplasia and involution. Growth Factors 10:207–222.Google Scholar
  37. 37.
    D. LeRoith, S. Neuenschwander, T. L. Wood, and L. Henninghausen (1995). Insulin-like growth factor-1 and Insulin-Like growth factor binding protein-3 inhibit involution of the mammary gland following lactation: Studies in transgenic mice. Prog. Growth Factor Res. 6:433–436.Google Scholar
  38. 38.
    S. Neuenschwander, A. Schwartz, T. L. Wood, C. T. L. Roberts, L. Henninghausen, and D. LeRoith (1996). Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J. Clin. Invest. 97:2225–2232.Google Scholar
  39. 39.
    M. Binoux and P. Hossenlopp (1988). Insulin-like growth factor (IGF) and IGF-binding proteins: comparison of human serum and lymph. J. Clin. Endocrinol. Metab. 67:509–514.Google Scholar
  40. 40.
    R. C. Baxter and J. L. Martin (1989). Binding proteins for the insulin-like growth factors: structure, regulation and function. Prog. Growth Factor Res. 1:49–68.Google Scholar
  41. 41.
    G. L. Francis, L. C. Read, F. J. Ballard, C. J. Bagley, F. M. Upton, P. M. Gravestock, and J. C. Wallace (1986). Purification and partial sequence analysis of insulin-like growth factor-1 from bovine colostrum. Biochem. J. 233:207–213.Google Scholar
  42. 42.
    Y. Oh, H. L. Muller, D. Y. Lee, P. J. Fielder, and R. G. Rosenfeld (1993). Characterization of the affinities of insulin-like growth factor (IGF)-binding proteins 1–4 for IGF-1, IGF-II, IGF-I/Insulin hybrid, and IGF-1 analogs. Endocrinology 132: 1337–1344.Google Scholar
  43. 43.
    D. L. Hadsell, N. M. Greenberg, J. M. Fligger, C. R. Baumrucker, and J.M. Rosen (1988). Targeted expression of des (1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 137:321–330.Google Scholar
  44. 44.
    G. B. Silbertstein and C. W. Daniel. (1987) Reversible inhibition of mammary gland growth by transforming growth factor β. Science 237:291–293.Google Scholar
  45. 45.
    C. L. Artega, T. C. Dugger, and S. D. Hurd (1996). The multifunctional role of transforming growth factor (TGF)-βs on mammary epithelial cell biology. Br. Cancer Res. Treat. 38: 49–56.Google Scholar
  46. 46.
    C. W. Daniel, S. Robinson, and G. B. Silberstein (1996). The role of TGF-β in patterning and growth of the mammary ductal tree. J. Mam. Gland Biol. Neoplasia 1:331–342.Google Scholar
  47. 47.
    C. S. Atwood, M. Ikeda, and B. K. Vonderhaar (1995). Involution of mouse mammary glands in whole organ culture: A model for studying programmed cell death. Biochem. Biophys. Res. Commun. 207:860–867.Google Scholar
  48. 48.
    D. F. Pierce, M. D. Johnson, Y. Matsui, S. D. Robinson, L. I. Gold, A. F. Purchio, C. W. Daniel, B. L. M. Hogan, and H. L. Moses (1993). Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGFβ1. Genes Dev. 7:2308–2317.Google Scholar
  49. 49.
    A. M. Brunner, H. Marquardt, A. R. Malacko, M. N. Lioubin, and A. F. Purchio (1989). Site directed mutagenesis of cysteine residues in the pro region of the transforming growth factor β-1 precursor. J. Biol. Chem. 264:13660–13664.Google Scholar
  50. 50.
    C. Jhappan, A. G. Geiser, E. C. Kordon, D. Bagheri, L. Hennighausen, A. B. Roberts, G. H. Smith, and G. Merlino (1993). Targeting expression of a transforming growth factor β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 12:1835–1845.Google Scholar
  51. 51.
    E. C. Kordon, R. A. McKnight, C. Jhappan, L. Hennighausen, G. Merlino, and G. H. Smith (1995). Ectopic TGFβ1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev. Biol. 168:47–61.Google Scholar
  52. 52.
    D. K. Armstrong, J. T. Isaacs, Y. L. Ottaviano, and N. E. Davidson (1992). Programmed cell death in an estrogen-independent human breast cancer cell line, MDA-MB-468. Cancer Res. 52:3418–3424.Google Scholar
  53. 53.
    H. Chen, T. R. Tritton, N. Kenny, M. Absher, and J. F. Chiu (1996). Tamoxifen induces TGF-β1 activity and apoptosis of human MCF-7 breast cancer cells in vitro. J. Cell Biochem. 61:9–17.Google Scholar
  54. 54.
    A. A. Colletta, L. M. Wakefield, F. V. Howell, D. Danielpour, M. Baum, and M. B. Sporn (1991). The growth inhibition of human breast cancer cells by a novel synthetic progestin involves the induction of transforming growth factor beta. J. Clin. Invest. 87:277–283.Google Scholar
  55. 55.
    A. M. Warri, R. L. Huovinen, A. M. Laine, P. M. Martikainen, and P. L. Harkonen (1993). Apoptosis in toremifene induced growth inhibition of human breast cancer cells in vivo and in vitro. J. Natl. Cancer Institute. 85:1412–1418.Google Scholar
  56. 56.
    C. Knabbe, L. Wakefield, K. Flanders, A. Kasid, R. Derynk, M. E. Lippman, and R. B. Dickson (1987). Evidence that TGF beta is a hormonally regulated negative growth factor in human breast cancer. Cell 48:417–428.Google Scholar
  57. 57.
    J. R. Benson, M. Baum, and A. A. Colletta (1996). Role of TGFβ in the anti-estrogen response/resistance of human breast cancer. J. Mam. Gland Biol. Neoplasia 1:381–390.Google Scholar
  58. 58.
    A. Butta, K. MacLennan, K. C. Flanders, N. P. M Sacks, I. Smith, A. McKinna, M. Dowsett, L. M. Wakefield, M.B. Sporn, M. Baum, and A. A. Colletta (1992). Induction of transforming growth factor β1 in human breast cancer in vivo following tamoxifen treatment. Cancer Res. 52:4261–4264.Google Scholar
  59. 59.
    J. R. Benson, L. M. Wakefield, M. Baum and A. A. Colletta (1996). Synthesis and secretion of transforming growth factor beta isoforms by primary cultures of human breast tumour fibroblasts in vitro and their modulation by tamoxifen. Brit. J Cancer 74:352–358.Google Scholar
  60. 60.
    R. R. Perry, Y. Kang, and B. R. Greaves (1995). Relationship between tamoxifen-induced transforming growth factor beta 1 expression, cytostasis and apoptosis in human breast cancer cells Brit. J. Cancer 72:1441–1446.Google Scholar
  61. 61.
    E. Kalkhoven, L. Kwakkenbos-Isbrucker, C. L. Mummery, S. W. de Laat, A. J. M. van den Eijnden-van Raaij, P. T. van der Saag, and B. van der Burg (1995). The role of TGF-β production in growth inhibition of breast-tumor cells by progestins. Int. J. Cancer 61:80–86.Google Scholar
  62. 62.
    E. Kalkhoven, B. A. J. Roelen, J. P. de Winter, C. L. Mummery, A. J. M. van den Eijnden-van Raaij, P. T. van der Saag, and B. van der Burg (1995). Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ. 6: 1151–1161.Google Scholar
  63. 63.
    K. M. Koli, T. T. Ramsey, Y. Ko, T. C. Dugger, M. G. Brattain, and C. L. Arteaga (1997). Blockade of transforming growth factor-β signaling does not abrogate antiestrogen-induced growth inhibition of human breast cancer cells. J. Biol. Chem. 272:8296–8302.Google Scholar
  64. 64.
    N. Sathyamoorthy, J. S. Gilsdorf, and T. T. Y. Wang (1998). Differential effect of genistein on transforming growth factor β1 expression in normal and malignant mammary epithelial cells. Anticancer Res. 18:2449–2453.Google Scholar
  65. 65.
    M. C. Pagliacci, M. Smacchia, G. Migliorati, F. Grignani, C. Riccardi, and I. Nicoletti (1994). Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. Eur. J. Cancer 30A:1675–1682.Google Scholar
  66. 66.
    M. Katdare, M. P. Osborne, and N. T. Telang (1998). Inhibition of aberrant proliferation and induction of apoptosis in preneoplastic human mammary epithelial cells by natural phytochemicals. Oncol. Rep. 5:311–315.Google Scholar
  67. 67.
    L. Fioravanti, V. Cappelletti, P. Miodini, E. Ronchi, M. Brivio, and G. Di Fronzo (1998). Genistein in the control of breast cancer cell growth: Insights into the mechanism of action in vitro. Cancer Lett. 130:143–152.Google Scholar
  68. 68.
    F. M. Uckun, R. K. Narla, X. Jun, T. Zeren, T. Venkatachalam, K. G. Waddick, A. Rostostev, and D. E. Myers (1998). Cytotoxic activity of epidermal growth factor-genistein against breast cancer cells. Clin. Cancer Res. 4:901–912.Google Scholar
  69. 69.
    A. Geier, C. Weiss, R. Beery, M. Haimsohn, R. Hemi, Z. Malik, and A. Karasik (1995). Multiple pathways are involved in protection of MCF-7 cells against death due to protein synthesis inhibition. J. Cell Physiol. 163:570–576.Google Scholar
  70. 70.
    H. Aoyagi and R. B. Dickson (undated). Programmed cell death and its resistance in breast cancer chemotherapy. Pathogenesis (in press).Google Scholar
  71. 71.
    R. R. Beerli, D. Graus-Porta, K. Woods-Cook, X. Chen, Y. Yarden, and N. E. Hynes. (1995). Neu differentiation factor activation of ErbB-3 and ErbB-4 is cell specific and displays a differential requirement for ErbB-2. Mol. Cell Biol. 15: 6496–6505.Google Scholar
  72. 72.
    C. C. Benz, G. K. Scott, J. C. Sarup, R. M. Johnson, D. Tripathy, E. Coronado, H. M. Shepard, and C. K. Osborne (1993). Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Br. Cancer Res. Treat. 24:85–95.Google Scholar
  73. 73.
    R. Kumar, M. Mandal, A. Lipton, H. Harvey, and C. B. Thompson (1996). Overexpression of HER2 Modulates Bcl-2, Bcl-XL, and tamoxifen induced apoptosis of human MCF-7 breast cancer cells. Clin. Cancer Res. 2:1215–1219.Google Scholar
  74. 74.
    J. M. Daly, C. B. Jannot, R. R. Beerli, D. Graus-Porta, F. G. Maurer, and N. E. Hynes (1997). Neu differentiation factor induces ErbB2 down-regulation and apoptosis of ErbB2–overexpressing breast tumor cells. Cancer Res. 57:3804–3811.Google Scholar
  75. 75.
    G. Peters, S. Brookes, R. Smith, M. Placzek, and C. Dickson (1989). The mouse homolog of the hstlk-FGF gene is adjacent to int-2 and is activated by proviral insertion in some virally induced mammary tumors. Proc. Natl. Acad. Sci. U.S.A. 86: 5678–5682.Google Scholar
  76. 76.
    H. Wang, M. Rubin, E. Fenig, A. DeBlasio, J. Mendelsohn, J. Yahalom, and R. Wieder (1997). Basic fibroblast growth factor causes growth arrest in MCF-7 human breast cancer cells while inducing both mitogenic and inhibitory G1 events. Cancer Res. 57:1750–1757.Google Scholar
  77. 77.
    Q. Wang, P. Maloof, H. Wang, E. Fenig, D. Stein, G. Nichols, T. N. Denny, J. Yahalom, and R. Wieder (1998). Basic fibroblast growth factor downregulates Bcl-2 and promotes apoptosis in MCF-7 human breast cancer cells. Exp. Cell Res. 238:177–187.Google Scholar
  78. 78.
    L. Zhang, S. Kharbanda, J. Hanfelt, and F. G. Kern (1998). Both autocrine and paracrine effects of transfected acidic fibroblast growth factor are involved in the estrogen-independent and antiestrogen-resistant growth of MCF-7 breast cancer cells. Cancer Res. 58:352–361.Google Scholar
  79. 79.
    H. Ueno, M. Gunn, K. Dell, A. Tseng, and L. Williams (1992). A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor. J. Biol. Chem. 267:1470–1476.Google Scholar
  80. 80.
    T. Nickerson, H. Huynh, and M. Pollak (1997). Insuling-like rowth factor binding protein-3 induces apoptosis in MCF7 breast cancer cells. Biochem. Biophys. Res. Commun. 237: 690–693.Google Scholar
  81. 81.
    Z. P. Gill, C. M. Perks, P. V. Newcomb, and J. M. P. Holly (1997). Insulin-like growth factor-binding protein (IGFBP-3) predisposes breast cancer cells to programmed cell death in a non-IGF-dependent manner. J. Biol. Chem. 272:25602–25607.Google Scholar
  82. 82.
    E. A. Carswell, L. J. Old, R. L. Kassel, S. Green, N. Fiore, and B. Williamson (1975). An endotoxin-induc ed serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. U.S.A. 72:3666–3670.Google Scholar
  83. 83.
    A. Ashkenazi and V. M. Dixit (1998). Death receptors: Signaling and modulation. Science 281:1305–1308.Google Scholar
  84. 84.
    B. J. Sugarman, B. B. Aggarwai, P. E. Haas, I. S. Figari, M. Palladino, and H. M. Shepard (1985). Recombinant human tumor necrosis factor-α: Effects on proliferation of normal and transformed cells in vitro. Science 230:943–945.Google Scholar
  85. 85.
    B. Sherry and A. Cerami (1988). Cachectin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. J. Cell. Biol. 107:1269–1275.Google Scholar
  86. 86.
    G. T. Budd, S. Green, L. H. Baker, E. P. Hersh, J. K. Weick, and C. K. Osborne (1991). A southwest oncology group phase II trial of recombinant tumor necrosis factor in metastatic breast cancer. Cancer 68:1694–1695.Google Scholar
  87. 87.
    G. Bellomo, M. Perotti, F. Taddei, F. Mirabelli, G. Finardi, P. Nicotera, and S. Orrenius (1992). Tumor necrosis factor α induces apoptosis in mammary adenocarcinoma cells by an increase in intranuclear free Ca2+ concentration and DNA fragmentation. Cancer Res. 52:1342–1346.Google Scholar
  88. 88.
    M. Jaattela, M. Benedict, M. Tewari, J. A. Shayman, and V. M. Dixit (1995). Bcl-x and Bcl-2 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells. Oncogene 10:2297–2305.Google Scholar
  89. 89.
    A. Srinivasan, F. Li, A. Wong, L. Kodandapani, R. Smidt, Jr., J. F. Krebs, L. C. Fritz, J. C. Wu, and K.J. Tomaselli (1998). Bcl-X L functions downstream of caspase-8 to inhibit Fas-and tumor necrosis factor receptor 1–induced apoptosis of MCF7 breast carcinoma cells. J. Biol. Chem. 273:4523–4529.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Edward C. Rosfjord
  • Robert B. Dickson

There are no affiliations available

Personalised recommendations