Journal of Statistical Physics

, Volume 100, Issue 5–6, pp 893–904 | Cite as

Ising Models on Hyperbolic Graphs II

  • C. Chris Wu


We consider Ising models with ferromagnetic interactions and zero external magnetic field on the hyperbolic graph ℋ(vf), where v is the number of neighbors of each vertex and f is the number of sides of each face. Let Tc be the critical temperature and T c =sup〈TTc:νf=(ν++ν)/2〉, where νf is the free boundary condition (b.c.) Gibbs state, ν+ is the plus b.c. Gibbs state and ν is the minus b.c. Gibbs state. We prove that if the hyperbolic graph is self-dual (i.e., v=f) or if v is sufficiently large (how large depends on f, e.g., v≥35 suffices for any f≥3 and v≥17 suffices for any f≥17) then 0<T c <Tc, in contrast with that T c =Tc for Ising models on the hypercubic lattice Z d with d≥2, a result due to Lebowitz.(22) While whenever T<T c , νf=(ν++ν)/2. The last result is an improvement in comparison with the analogous statement in refs. 28 and 33, in which it was only proved that νf=(ν++ν)/2 when TT c and it remains to show in both papers that ν f =(ν++ν)/2 whenever T<T c . Therefore T c and Tc divide [0, ∞] into three intervals: [0, T c ), (T c Tc), and (Tc, ∞] in which ν+ν but ν f =(ν++ν)/2, ν+ν and ν f ≠(ν++ν)/2, and ν+=ν, respectively.

Ising models percolation hyperbolic graphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Aizenman, Translation invariance and instability of phase coexistence in the two dimensional Ising system, Commun. Math. Phys. 73:83–94 (1980).Google Scholar
  2. 2.
    M. Aizenman, J. Chayes, L. Chayes, and C. M. Newman, x-y 2 Ising and Potts models, J. Stat. Phys. 50:1–40 (1988).Google Scholar
  3. 3.
    I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Group-invariant percolation on graphs, Geom. Func. Analysis 9:29–66 (1999).Google Scholar
  4. 4.
    I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Critical percolation on any non-amenable group has no infinite clusters, Ann. Probab., to appear.Google Scholar
  5. 5.
    I. Benjamini and O. Schramm, Percolation beyond Z d, many questions and a few answers, Electronic Commun. Probab. 1:71–82 (1996).Google Scholar
  6. 6.
    I. Benjamini and O. Schramm, Percolation in the hyperbolic plane, preprint.Google Scholar
  7. 7.
    I. Benjamini and O. Schramm, Recent progress on percolation beyond Z d. http://www. schramm/papers/pyond-rep/index.html.Google Scholar
  8. 8.
    R. M. Burton and M. Keane, Density and uniqueness in percolation, Commun. Math. Phys. 121:501–505 (1989).Google Scholar
  9. 9.
    R. L. Dobrushin, Gibbs state describing coexistence of phases for a three-dimensional Ising model, Theory Probab. Appl. 17:582–600 (1972).Google Scholar
  10. 10.
    B. Dudo, R. Scheib, and C. C. Wu, Growth rates of some planar graphs—an application of Mathematica, in preparation.Google Scholar
  11. 11.
    C. M. Fortuin, On the random cluster model. III. The simple random cluster model, Physica 59:545–570 (1972).Google Scholar
  12. 12.
    C. M. Fortuin and P. W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models, Physica 57:536–564 (1972).Google Scholar
  13. 13.
    G. Gallavotti and S. Miracle-Sole, Equilibrium states of the Ising model in the two phase region, Phys. Rev. B 5:2555–2559 (1972).Google Scholar
  14. 14.
    G. R. Grimmett, The stochastic random-cluster process and the uniqueness of random-cluster measures, Ann. Probab. 23:1461–1510 (1995).Google Scholar
  15. 15.
    G. R. Grimmett and C. M. Newman, Percolation in ∞+1 dimensions, in Disorder in Physical Systems, G. R. Grimmett and D. J. A. Welsh, eds. (Clarendon Press, Oxford, 1990), pp. 167–190.Google Scholar
  16. 16.
    O. Häggström, J. Jonasson, and R. Lyons, Explicit isoperimetric constants, phase transitions in the random-cluster and Potts models, and Bernoullicity, preprint.Google Scholar
  17. 17.
    O. Häggström and Y. Peres, Monotonicity of uniqueness for percolation on Cayley graphs: All infinite clusters are born simultaneously, Probab. Th. Rel. Fields 113:273–285 (1999).Google Scholar
  18. 18.
    Y. Higuchi, On the absence of non-translation invariant Gibbs states for the two dimen-sional Ising model, in Random Fields (Esztergom, 1979), J. Fritz, J. L. Lebowitz and D. Szsz, eds. (Amsterdam, North-Holland, 1981), Vol. I, pp. 517–534.Google Scholar
  19. 19.
    J. Jonasson, The random cluster model on a general graph and a phase transition charac-terization of nonamenability, Stoch. Proc. Appl. 79:335–354 (1999).Google Scholar
  20. 20.
    J. Jonasson and J. Steif, Amenability and phase transition in the Ising model, J. Theor. Probab., to appear.Google Scholar
  21. 21.
    S. Lalley, Percolation on Fuchsian groups, Ann. Inst. H. Poincaré, Probab. Stat. 34: 151–178 (1998).Google Scholar
  22. 22.
    J. L. Lebowitz, Coexistence of phases in Ising ferromagnets, J. Stat. Phys. 16:463–476 (1977).Google Scholar
  23. 23.
    R. Lyons, Random walks and the growth of groups, C.R. Acad. Sci. Paris Se_ r. I Math. 320:1361–1366 (1995).Google Scholar
  24. 24.
    R. Lyons and Y. Peres, Probability on Trees and Networks. Book in preparation, draft available at URL Scholar
  25. 25.
    R. Lyons and O. Schramm, Indistinguishability of percolation clusters, Ann. Probab., to appear.Google Scholar
  26. 26.
    B. Mohar, Isoperimetric inequalities, growth, and the spectrum of graphs, Linear Algebra Appl. 103:119–131 (1988).Google Scholar
  27. 27.
    C. M. Newman and L. S. Schulman, Infinite clusters in percolation models, J. Stat. Phys. 26:613–628 (1981).Google Scholar
  28. 28.
    C. M. Newman and C. C. Wu, Markov fields on branching planes, Probab. Th. Rel. Fields. 85:539–552 (1990).Google Scholar
  29. 29.
    R. Rietman, B. Nienhuis, and J. Oitmaa, The Ising model on hyperlattices, J. Phys. A: Math. Gen. 25:6577–6592 (1992).Google Scholar
  30. 30.
    R. H. Schonmann, Stability of infinite clusters in supercritical percolation, Probab. Th. Rel. Fields 113:287–300 (1999).Google Scholar
  31. 31.
    R. H. Schonmann, Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs, preprint.Google Scholar
  32. 32.
    C. M. Series and Y. G. Sinai, Ising models on the Lobachevsky plane, Commun. Math. Phys. 128:63–76 (1990).Google Scholar
  33. 33.
    C. C. Wu, Ising models on hyperbolic graphs, J. Stat. Phys. 85:251–259 (1997).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • C. Chris Wu
    • 1
  1. 1.Department of MathematicsPenn State University, Beaver CampusMonaca

Personalised recommendations