Journal of Mammary Gland Biology and Neoplasia

, Volume 4, Issue 1, pp 35–52

Mammary Epithelial Stem Cells: Our Current Understanding

  • Gloria Chepko
  • Gilbert H. Smith
Article

Abstract

It has recently been shown that the progeny froma single cell may comprise the epithelial population ofa fully developed lactating mammary outgrowth in mice.Serial transplantation of epithelial fragments from this clonally derived gland demonstratesthat the subsequently generated outgrowths are alsocomprised of progeny from the original antecedent.Similarly, genetic analysis of contiguous portions of individual human mammary ducts within the samebreast indicates their clonal derivation. Theseobservations support the concept that multipotenttissue-specific epithelial stem cells are present amongthe parenchymal cells of the mammary gland. Here,we present the developing evidence for the presence ofstem cells in virtually every renewing mammalian tissueas well as some classically considered to consist only of differentiated cells. Further, wereview the present morphologic and biologic evidence forstem cells and lineage-limited progenitor cells in humanand rodent mammary epithelium. Although a number of selective markers are known for variouslineage-limited hematopoietic cells and their progeny,our understanding of the biology of the precursor cellsfor mammary epithelium is just beginning. Our purpose here is to develop further interest in theclarification of these issues in the biology of themammary gland.

EPITHELIAL STEM CELLS ASYMMETRIC MITOSIS MITOSIS MAMMARY GLAND MORPHOGENESIS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. McKay (1997). Stem cells in the central nervous system. Science 276:66–71.Google Scholar
  2. 2.
    Y. N. and Jan L. Y. Jan (1998). Asymmetric cell division. Nature 392:775–778.Google Scholar
  3. 3.
    S. W. Levison and J. E. Goldman (1997). Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J. Neurosci. Res. 48:83–94.Google Scholar
  4. 4.
    S. J. Morrison, N. M. Shah, and D. J. Anderson (1997). Regulatory mechanisms in stem cell biology. Cell 88:287–298.Google Scholar
  5. 5.
    L. J. Young, D. Medina, K. B. De Ome, and C. W. Daniel (1971). The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp. Gerontol. 6:49–56.Google Scholar
  6. 6.
    E. C. Kordon, G. H. Smith, R. Callahan, and D. Gallahan (1995). A novel nonmouse mammary tumor virus activation of the int-3 gene in a spontaneous mouse mammary tumor. J. Virol. 69:8066–8069.Google Scholar
  7. 7.
    G. H. Smith, D. Gallahan, F. Diella, C. Jhappan, G. Merlino, and R. Callahan (1995). Constitutive expression of a truncated Int3 gene in mouse mammary epithelium impairs differentiation and functional development. Cell Growth Differ. 6:563–577.Google Scholar
  8. 8.
    J. C. Cohen, P. R. Shank, V. L. Morris, R. Cardiff, and H. E. Varmus (1979). Integration of the DNA of mouse mammary tumor virus in virus-infected normal and neoplastic tissue of the mouse. Cell 16:333–345.Google Scholar
  9. 9.
    R. D. Cardiff (1984). Protoneoplasia: The molecular biology of murine mammary hyperplasia. Adv. Cancer Res. 42:167–190.Google Scholar
  10. 10.
    S. Sell and G. B. Pierce (1994). Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinoma s and epithelial cancers. Lab. Invest. 70:6–22.Google Scholar
  11. 11.
    A. Fischer (1997). How breast cancer is diagnosed. Mammary Gland Web, Site:http://mammary.nih.gov/reviews/Fischser001/index.html.Google Scholar
  12. 12.
    D. J. Ferguson (1985). Ultrastructural characterisation of the proliferative (stem?) cells within the parenchyma of the normal resting breast. Virchows Arch A Pathol. Anat. Histopathol. 407:379–385.Google Scholar
  13. 13.
    D. J. Ferguson (1988). An ultrastructural study of mitosis and cytokinesis in normal “resting” human breast. Cell Tissue Res. 252:581–587.Google Scholar
  14. 14.
    G. H. Smith (1996). Experimental mammary epithelial morphogenesis in an in vivo model: Evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res. Treat. 39:21–31.Google Scholar
  15. 15.
    G. Chepko and G. H. Smith (1997). Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell 29:239–253.Google Scholar
  16. 16.
    E. Kordon and G.H. Smith (1998). An entire mammary gland may comprise the progeny from a single cell. Development 125:1921–1930.Google Scholar
  17. 17.
    G. K. Michalopoulos and M. C. DeFrances (1997). Liver regeneration. Science 276:60–66.Google Scholar
  18. 18.
    L. Cosentino, P. Shaver-Walker, and J. A. Heddle (1996). The relationships among stem cells, crypts and villi in the small intestine of mice as determined by mutation tagging. Dev. Dyn. 207:420–428.Google Scholar
  19. 19.
    P. H. Jones (1997). Epithelial stem cells. BioEssays. 19:683–688.Google Scholar
  20. 20.
    M. Emura (1997). Stem Cells of the respiratory epithelium and their in vitro cultivation. In Vitro Cell Dev. Biol. Anim. 33:3–14.Google Scholar
  21. 21.
    G. Ferrari, A.G. Cusella-De, M. Coletta, E. Paolucci, A. Stornaiuolo, G. Cossu, and F. Mavilio (1998). Muscle regeneration by bone marrow-derived myogenic progenitors [see comments] [published erratum appears in Science; 281(5379):923]. Science 279:1528–1530.Google Scholar
  22. 22.
    I. Boll (1980). Morphological characterization of the myelopoietic stem cell reserves in the human. Folia Haematol. Int. Mag. Klin. Morphol. Blutforsch. 107:531–547.Google Scholar
  23. 23.
    E. Y. Snyder, D. L. Deitcher, C. Walsh, S. Arnold-Aldea, E. A. Hartwieg, and C. L. Cepko (1992). Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51.Google Scholar
  24. 24.
    D. L. Turner and C. L. Cepko (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:131–136.Google Scholar
  25. 25.
    D. L. Turner, E. Y. Snyder, and C. L. Cepko (1990). Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4:833–845.Google Scholar
  26. 26.
    P. H. Jones and F. M. Watt (1993). Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724.Google Scholar
  27. 27.
    M. M. Bortin, A. A. Rimm, W. C. Rose, R. L. Truitt, and E. C. Saltzstein (1976). Transplantation of hematopoietic and lymphoid cells in mice. Transplantation 21:331–336.Google Scholar
  28. 28.
    M. S. Rhyu and J. A. Knoblich (1995). Spindle orientation and asymmetric cell fate. Cell 82:523–526.Google Scholar
  29. 29.
    C. P. Shen, L. Y. Jan, and Y. N. Jan (1997). Miranda is required for the asymmetric localization of prospero during mitosis in drosophila. Cell 90:449–458.Google Scholar
  30. 30.
    A. Chenn and S.K. McConnel (1995). Cleavage orientation and the asymmetric inheritance of notch 1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641.Google Scholar
  31. 31.
    R. Kraut, W. Chia, L. Y. Jan, Y. N. Jan, and J. A. Knoblich (1996). Role of Inscuteable in orienting asymmetric cell divisions in drosophila. Nature 383:50–55.Google Scholar
  32. 32.
    D. Gallahan, C. Jhappan, G. Robinson, L. Hennighausen, R. Sharp, E. Kordon, R. Callahan, G. Merlino, and G.H. Smith (1996). Expression of a truncated int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 56:1775–1785.Google Scholar
  33. 33.
    P. J. Swiatek, C. E. Lindsell, F. F. del Amo, G. Weinmaster, and T. Gridley (1994). Notchl is essential for postimplantation development in mice. Genes Dev. 8:707–719.Google Scholar
  34. 34.
    J. M. Williams and C. W. Daniel (1983). Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol. 97:274–290.Google Scholar
  35. 35.
    F. Varas, A. Bernard, and J. A. Bueren (1998). Restrictions in the stem cell function of murine bone marrow grafts after ex vivo expansion of short-term repopulating progenitors. Exp Hematol. 26:100–109.Google Scholar
  36. 36.
    C. W. Daniel, K. B. Deome, J. T. Young, P. B. Blair, and L. J. Faulkin (1968). The in vivo life span of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proc. Natl. Acad. Sci. U.S.A. 61:52–60.Google Scholar
  37. 37.
    K. and Gardener W. U. Hoshino (1967). Transplantability and life span of mammary gland during serial transplantation in mice. Nature 213:193–194.Google Scholar
  38. 38.
    C. W. Daniel and L. J. Young (1971). Influence of cell division on an aging process. Life span of mouse mammary epithelium during serial propagation in vivo. Exp. Cell Res. 65:27–32.Google Scholar
  39. 39.
    Y. C. Tsai, Y. Lu, P. W. Nichols, G. Zlotnikov, P. A. Jones, and H. Smith (1996). Contiguous patches of normal human mammary epithelium derived from a single stem cell: Implications for breast carcinogenesis. Cancer Res. 56:402–404.Google Scholar
  40. 40.
    S. J. Szilvassy, R. K. Humphries, P. M. Lansdorp, A. C. Eaves, and C. J. Eaves (1990). Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl. Acad. Sci. U.S.A. 87:8736–8740.Google Scholar
  41. 41.
    C. S. Nicoll and H. A. Tucker (1965). Estimates of parenchymal, stromal, and lymph node deoxyribonucleii c acid in mammary glands of C3H/Crgl/2 mice. Life Sci. 4:993–1001.Google Scholar
  42. 42.
    E. J. Ormerod and P. S. Rudland (1985). Isolation and differentiation of cloned epithelial cell lines from normal rat mammary glands. In Vitro Cell Dev. Biol. 21:143–153.Google Scholar
  43. 43.
    N. D. Kim and K. H. Clifton (1993). Characterization of rat mammary epithelial cell subpopulations by peanut lectin and anti-Thy-1.1 antibody and study of flow-sorted cells in vivo. Exp. Cell Res. 207:74–85.Google Scholar
  44. 44.
    S. R. Dundas, M. G. Ormerod, B. A. Gusterson, and M. J. O'Hare (1991). Characterization of luminal and basal cells flow-sorted from the adult rat mammary parenchyma. J. Cell Sci. 100 (Pt 3):459–471.Google Scholar
  45. 45.
    H. H. Traurig (1965). Cell proliferation in the mammary gland during late pregnancy and lactation. Anat. Rec. 157:489–504.Google Scholar
  46. 46.
    G. H. Smith and D. Medina (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J. Cell Sci. 90:173–183.Google Scholar
  47. 47.
    H. Sakabe, T. Kimura, Z. Zeng, H. Minamiguchi, S. Tsuda, S. Yokota, K. Hodohara, T. Abe, S. D. Lyman, and Y. Sonoda (1998). Haematopoietic action of flt3 ligand on cord blood-derived CD34–positive cells expressing different levels of flt3 or c-kit tyrosine kinase receptor: Comparison with stem cell factor. Eur. J. Haematol. 60:297–306.Google Scholar
  48. 48.
    H. Sakabe, N. Yahata, T. Kimura, Z. Z. Zeng, H. Minamiguchi, H. Kaneko, K. J. Mori, K. Ohyashiki, J. H. Ohyashiki, K. Toyama, T. Abe, and Y. Sonoda (1998). Human cord blood-derived primitive progenitors are enriched in CD34 + c-kit-cells: Correlation between long-term culture-initiating cells and telomerase expression. Leukemia 12:728–734.Google Scholar
  49. 49.
    H. Meltzer, J. D. Hatton, and U. H. Sang (1998). Cell type-specific development of rodent central nervous system progenitor cells in culture. J. Neurosurg. 88:93–98.Google Scholar
  50. 50.
    G. Chepko (1978). George Washington University, Washington, D.C. Ph.D.Google Scholar
  51. 51.
    P. D. Shimmin and R. D. Hill, (1964). An electron microscope study of the internal structure of casein micelles. J. Dairy Res. 31:121–123.Google Scholar
  52. 52.
    G. H. Smith, B. K. Vonderhaar, D. E. Graham, and D. Medina (1984). Expression of pregnancy-specific genes in preneoplastic mouse mammary tissues from virgin mice. Cancer Res. 44:3426–3437.Google Scholar
  53. 53.
    B. K. Vonderhaar and G. H. Smith (1982). Dissociation of cytological and functional differential in virgin mouse mammary gland during inhibition of dna synthesis. J. Cell Sci. 53:97–114.Google Scholar
  54. 54.
    J. F. Zolman (1993). Biostatistics: Experimental Design and Statistical Inference, Oxford University Press, Oxford New York.Google Scholar
  55. 55.
    G. H. Smith, T. Mehrel, and D. R. Roop (1990). Differential keratin gene expression in developing, differentiating, preneoplastic, and neoplastic mouse mammary epithelium. Cell Growth Differ. 1:161–170.Google Scholar
  56. 56.
    J. Stingl, C.J. Eaves, U. Kuusk, and J.T. Emerman (1998). Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast [In Process Citation]. Differentiation. 63:201–213.Google Scholar
  57. 57.
    P.S. Rudland, R. Barraclough, D.G. Fernig, and J.A. Smith (1998). Growth and differentiation of the normal mammary gland and its tumours. Biochem. Soc. Symp. 63:1–20.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Gloria Chepko
  • Gilbert H. Smith

There are no affiliations available

Personalised recommendations