Advertisement

Structural Cues from the Tissue Microenvironment Are Essential Determinants of the Human Mammary Epithelial Cell Phenotype

  • Karen L. Schmeichel
  • Valerie M. Weaver
  • Mina J. Bissell
Article

Abstract

Historically, the study of normal human breastfunction and breast disorders has been significantlyimpaired by limitations inherent to available modelsystems. Recent improvements in human breast epithelial cell lines and three-dimensional(3-D)3 culture systems have contributed tothe development of in vitro model systems thatrecapitulate differentiated epithelial cell phenotypeswith remarkable fidelity. Molecular characterization of these humanbreast cell models has demonstrated that normal breastepithelial cell behavior is determined in part by theprecise interplay that exists between a cell and its surrounding microenvironment. Recent functionalstudies of integrins in a human model system provideevidence to support the idea that the structuralstability afforded by integrin-mediatedcell-extracellular matrix interactions is an important determinantof normal cellular behavior, and that alterations intissue structure can give rise to tumorigenicprogression.

MICROENVIRONMENT HUMAN BREAST CANCER EXTRACELLULAR MATRIX MAMMARY GLAND TUMORIGENESIS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Bissell, H. G. Hall, and G. Parry (1982). How does the extracellular matrix direct gene expression. J. Theor. Biol. 99: 31-68.Google Scholar
  2. 2.
    A. W. Stoker, C. H. Streuli, M. Martins-Green, and M. J. Bissell (1990). Designer microenvironments for the analysis of cell and tissue function. Curr. Opin. Cell Biol. 2: 864-874.Google Scholar
  3. 3.
    C. Q. Lin and M. J. Bissell (1993). Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J. 7: 737-743.Google Scholar
  4. 4.
    N. Boudreau, C. Meyers, and M. J. Bissell (1995). From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends Cell Biol. 5: 1-4.Google Scholar
  5. 5.
    C. D. Roskelley, A. Srebrow, and M. J. Bissell (1995). A hierarchy of ECM-mediated signaling regulates tissue-specific gene expression. Curr. Opin. Cell Biol. 7: 736-7474.Google Scholar
  6. 6.
    J. C. Adams and F. M. Watt (1993). Regulation of development and differentiation by the extracellular matrix. Development 117: 1183-1198.Google Scholar
  7. 7.
    J. Ashkenas, J. Muschler, and M. J. Bissell (1996). The extracellular matrix in epithelial biology: Shared molecules and common themes in distant phyla. Devel. Biol. 180: 433-444.Google Scholar
  8. 8.
    B. Gumbiner (1996). Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 84: 345-357.Google Scholar
  9. 9.
    L. Rønnov-Jessen, O. W. Petersen, and M. J. Bissell (1996). Cellular changes involved in conversion of normal to malignant breast: Importance of the stromal reaction. Physiol. Rev. 76: 69-125.Google Scholar
  10. 10.
    G. Michaelopoulos and H. C. Pitot (1975). Primary culture of parenchymal liver cells on collagen membranes. Exp. Cell Res. 94: 70-78.Google Scholar
  11. 11.
    J. T. Emmerman and D. R. Pitelka (1977). Maintenance and identification of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13: 316-328.Google Scholar
  12. 12.
    H. K. Kleinman, L. Luckenbill-Edds, F. W. Cannon, and G. C. Sephel (1987). Use of extracellular matrix components for cell culture. Anal. Biochem. 166: 1-13.Google Scholar
  13. 13.
    R. Kopan, G. Traska, and E. Fuchs (1987). Retinoids as important regulators of terminal differentiation: Examining keratin expression in individual epidermal cells at various stages of keratinization. J. Cell Biol. 105: 427-440.Google Scholar
  14. 14.
    R. Kopan and E. Fuchs (1989). The use of retinoic acid to probe the relation between hyperproliferat ion-associated keratins and cell proliferation in normal and malignant epidermal cells. J. Cell Biol. 109: 295-307.Google Scholar
  15. 15.
    F. M. Watt (1989). Terminal differentiation of epidermal keratinocytes. Curr. Opin. Cell Biol. 1: 1107-1115.Google Scholar
  16. 16.
    H. K. Kleinman, R. C. Ogle, F. B. Cannon, C. D. Little, T. M. Sweeny, and L. Luckenbill-Edds (1988). Laminin receptors for neurite formation. Proc. Natl. Acad. Sci. U.S.A. 85: 1282-1286.Google Scholar
  17. 17.
    L. C. Smith-Thomas, J. Stevens, J. Fok-Seang, A. Faissner, J. H. Rogers, and J. W. Fawcett (1995). Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors. J. Cell Sci. 108: 1307-1315.Google Scholar
  18. 18.
    C. M. DiPersio, D. A. Jackson, and K. S. Zaret (1991). The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol. Cell. Biol. 11: 4405-4414.Google Scholar
  19. 19.
    A. Ben Ze'ev, G. S. Robinson, N. L. R. Bucher, and S. R. Farmer (1988). Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 85: 2161-2165.Google Scholar
  20. 20.
    D. M. Bissell, D. M. Arenson, J. J. Maher, and F. J. Roll (1987). Support of cultured hepatocytes by a laminin-rich gel. J. Clin. Invest. 79: 801-812.Google Scholar
  21. 21.
    D. M. Bissell, J. M. Caron, L. E. Babiss, and J. M. Friedman (1990). Transcriptional regulation of the albumin gene in cultured rat hepatocytes. Mol. Biol. Med. 7: 187-197.Google Scholar
  22. 22.
    D. E. Ingber and J. Folkman (1989). How does extracellular matrix control capillary morphogenesis. Cell 58: 803-805.Google Scholar
  23. 23.
    Y. Kubota, H. K. Kleinman, G. R. Martin, and T. J. Lawley (1988). Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary structures. J. Cell Biol. 107: 1589-1598.Google Scholar
  24. 24.
    D. S. Grant, K.-I. Tashiro, B. Seui-Real, Y. Yamada, G. R. Martin, and H. K. Kleinman (1989). Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58: 933-943.Google Scholar
  25. 25.
    D. S. Grant, J. L. Kinsella, M. C. Kibbey, S. LaFlamme, P. D. Burbelo, A. L. Goldstein, and H. K. Kleinman (1995). Matrigel induces thymosin α4 gene in differentiating endothelial cells. J. Cell Sci. 108: 3685-3694.Google Scholar
  26. 26.
    C. Gentili, P. Bianco, M. Neri, M. Malpeli, G. Campanile, P. Castagnola, R. Cancedda, and F. D. Cancedda (1993). Cell proliferation, extracellular matrix mineralization, and ovotransferrin transient expression during in vitro differentiation of chick hypertrophic chondrocytes into osteoblast-like cells. J. Cell Biol. 122: 703-712.Google Scholar
  27. 27.
    S. Vukicevic, F. P. Luyten, H. K. Kleinman, and A. H. Reddi (1990). Differentiation of canalicular cell processes in bone cells by basement membrane matrix components: regulation by discrete domains of laminin. Cell 63: 437-445.Google Scholar
  28. 28.
    Q. Bao and R. C. Hughes (1995). Galectin-3 expression and effects on cyst enlargement and tubulogenesis in kidney epithelial MDCK cells cultured in three-dimension al matrices in vitro. J. Cell Sci. 108: 2791-2800.Google Scholar
  29. 29.
    M. C. Neville and C. W. Daniel (eds.) (1987). The Mammary Gland. Plenum Press, New York.Google Scholar
  30. 30.
    E. J. Feuer, L.-M. Wun, C. C. Boring, W. D. Flanders, J. J. Timmel, and T. Tong (1993). The lifetime risk of developing breast cancer. J. Natl. Cancer Inst. 85: 892-897.Google Scholar
  31. 31.
    M. S. Wolff, G. W. Collman, J. C. Barrett, and J. Huff (1996). Breast cancer and environmental risk factors: Epidemiologic al and experimental findings. Ann. Rev. Pharmacol. Toxicol. 36: 573-596.Google Scholar
  32. 32.
    V. M. Weaver, A. H. Fischer, O. W. Petersen, and M. J. Bissell (1996). The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimension al culture assay. Biochem. Cell Biol. 74: 833-851.Google Scholar
  33. 33.
    J. Aggeler, J. Ward, L. M. Blackie, M. H. Barcellos-Hoff, C. H. Streuli, and M. J. Bissell (1991). Cytodifferentiation of mouse mammary epithelial cells cultured on a reconstituted basement membrane reveals striking similarities to development in vivo. J. Cell Sci. 99: 407-417.Google Scholar
  34. 34.
    M. H. Barcellos-Hoff, J. Aggeler, T. G. Ram, and M. J. Bissell (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105: 223-235.Google Scholar
  35. 35.
    C. H. Streuli, C. Schmidhauser, M. Kobrin, M. J. Bissell, and R. Derynck (1993). Extracellular matrix regulates expression of the TGF-α1 gene. J. Cell Biol. 120: 253-260.Google Scholar
  36. 36.
    S. Lelièvre, V. M. Weaver, and M. J. Bissell (1996). Extracellular matrix signaling from the cellular membrane skeleton to the nuclear skeleton: A model of gene regulation. Recent Progress Hormone Res. 51: 417-432.Google Scholar
  37. 37.
    M. J. Bissell (1981). The differentiated state of normal and malignant cells or how to define a normal cell in culture. Int. Rev. Cytol. 70: 27-100.Google Scholar
  38. 38.
    O. W. Petersen, L. Rønnov-Jessen, A. R. Howlett, and M. J. Bissell (1992). Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 89: 9064-9068.Google Scholar
  39. 39.
    J. Taylor-Papadimitriou and E. B. Lane (1987). Keratin expression in the mammary gland. In M. C. Neville, and C. W. Daniel (eds.) The Mammary Gland Plenum Publishing New York, pp. 181-215.Google Scholar
  40. 40.
    D. Alford and J. Taylor-Papadimitriou (1996). Cell adhesion, molecules in the normal and cancerous mammary gland. J. Mam. Gland Biol. Neoplasia 1: 207-218.Google Scholar
  41. 41.
    G. C. Easty, D. M. Easty, P. Monaghan, M. G. Ormerod, and A. M. Neville (1980). Preparation and identification of human breast epithelial cells in culture. Int. J. Cancer 26: 577-584.Google Scholar
  42. 42.
    D. H. Janss, E. A. Hillman, L. B. Malan-Shibley, and T. L. Ben (1980). Methods for the isolation and culture of normal human breast epithelial cells. In C. C. Harris, B. R. Trump, and G. D. Stoner (eds.), Methods in Cell Biology Academic, New York, pp. 107-134.Google Scholar
  43. 43.
    M. Stampfer, R. C. Hallowes, and A. J. Hackett (1980). Growth of normal human mammary cells in culture. In Vitro 16: 415-425.Google Scholar
  44. 44.
    M. R. Stampfer and P. Yaswen (1993). Culture systems for study of human mammary epithelial cell proliferation, differentiation and transformation. Cancer Surveys 18: 7-34.Google Scholar
  45. 45.
    P. Briand, O. W. Petersen, and B. VanDeurs (1987). A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined medium. In Vitro Cell Devel. Biol. 23: 181-188.Google Scholar
  46. 46.
    H. D. Soule, T. M. Maloney, S. R. Wolman, W. D. Peterson, R. Brenz, C. M. McGrath, J. Russo, R. J. Pauley, R. F. Jones, and S. C. Brooks (1990). Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50: 6075-6086.Google Scholar
  47. 47.
    J. W. Shay, G. Tomlinson, M. A. Piatyszek, and L. S. Gollahon (1995). Spontaneous in vitro immortalization of breast epithelial cells from a patient with Li-Fraumeni syndrome. Mol. Cell. Biol. 15: 425-432.Google Scholar
  48. 48.
    C. C. De Fromontel, P. C. Nardeux, T. Soussi, C. Lavialle, S. Estrade, G. Carloni, K. Chandrasekaran, and R. Cassingena (1985). Epithelial HBL-100 cell line derived from milk of an apparently healthy woman harbors SV40 genetic information. Exp. Cell Res. 160: 83-94.Google Scholar
  49. 49.
    E. V. A. Gaffney (1982). A cell line (HBL-100) established from human breast milk. Cell Tissue Res. 227: 563-568.Google Scholar
  50. 50.
    V. Band, D. Zajchowski, V. Kulesa, and R. Sager (1990). Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements. Proc. Natl. Acad. Sci. U.S.A. 87: 463-467.Google Scholar
  51. 51.
    C. C. Harris (1987). Human tissues and cells in carcinogenesis research. Cancer Res. 47: 1-10.Google Scholar
  52. 52.
    M. R. Stampfer and J. C. Bartley (1985). Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc. Natl. Acad. Sci. U.S.A. 82: 2394-2398.Google Scholar
  53. 53.
    D. E. Wazer, Q. Chu, X.-L. Liu, Q. Gao, H. Safaii, and V. Band (1994). Loss of p53 protein during radiation transformation of primary human mammary epithelial cells. Mol. Cell. Biol. 14: 2468-2478.Google Scholar
  54. 54.
    A. Leone, U. Flatow, and K. VanHoutte (1993). Transfection of human nm23-H1 into the human MDA-MB-435 breast carcinoma cell line: effects on tumor metastatic potential, colonization, and enzymatic activity. Oncogene 8: 2325-2333.Google Scholar
  55. 55.
    A. R. Howlett, O. W. Petersen, P. S. Steeg, and M. J. Bissell (1994). A novel function for the nm23-H1 gene: overexpression in human breast carcinoma cells leads to the formation of basement membrane and growth arrest. J. Natl. Cancer Inst. 86: 1838-1844.Google Scholar
  56. 56.
    V. Band, D. Zajchowski, K. Swisshelm, D. Trask, V. Kulesa, C. Cohen, J. Connolly, and R. Sager (1990). Tumor progression in four mammary epithelial cell lines derived from the same patient. Cancer Res. 50: 7351-7357.Google Scholar
  57. 57.
    X.-L. Liu, H. Band, Q. Gao, D. E. Wazer, Q. Chu, and V. Band (1994). Tumor cell-specific loss of p53 protein in a unique in vitro model of human breast tumor progression. Carcinogenesis 15: 1969-1973.Google Scholar
  58. 58.
    S.-L. Liu, D. E. Wazer, K. Watanabe, and V. Band (1996). Identification of a novel serine protease-like gene, the expression of which is down-regulated during breast cancer progression. Cancer Res. 56: 3371-3379.Google Scholar
  59. 59.
    V. M. Weaver, A. R. Howlett, B. Langton-Webster, O. W. Petersen, and M. J. Bissell (1995). The development of a functionally relevant cell culture model of progressive human breast cancer. Sem. Cancer Biol. 6: 175-184.Google Scholar
  60. 60.
    P. Briand, K. V. Nielsen, M. W. Madsen, and O. W. Petersen (1996). Trisomy 7p and malignant transformation of human breast epithelial cells following epidermal growth factor withdrawal. Cancer Res. 56: 2039-2044.Google Scholar
  61. 61.
    K. Vang Nielsen, M. W. Madsen, and P. Briand (1994). In vitro karyotype evolution and cytogenetic instability in the nontumorigenic human breast epithelial cell line HMT-3522. Cancer Genet. Cytogenet. 78: 189-199.Google Scholar
  62. 62.
    C. Moyret, M. W. Madsen, J. Cooke, P. Briand, and C. Theillet (1994). Gradual selection of a cellular clone presenting a mutation at Codon 179 of the p53 gene during establishment of the immortalized human breast epithelial cell line HMT-3522. Exp. Cell Res. 215: 380-385.Google Scholar
  63. 63.
    M.W. Madsen, A. E. Lykkesfeldt, I. Laursen, K. V. Nielsen, and P. Briand (1992). Altered gene expression of c-myc epidermal growth factor receptor, transforming growth factor-αand cerb-B2 in an immortalized breast epithelial cell line, HMT-3522 is associated with decreased growth factor requirements. Cancer Res. 52: 1210-1217.Google Scholar
  64. 64.
    S. H. Dairkee, G. Deng, M. R. Stampfer, F. M. Waldman, and H. S. Smith (1995). Selective cell culture of primary breast carcinoma. Cancer Res. 55: 2516-2519.Google Scholar
  65. 65.
    M. B. Sporn and A. B. Roberts (1985). Autocrine growth factors and cancer. Nature 313: 747-751.Google Scholar
  66. 66.
    B. Johansson, S. Heim, N. Mandahl, F. Mertens, and F. Mitelman (1993). Trisomy 7 in nonneoplastic cells. Genes, Chromosomes Cancer 6: 199-205.Google Scholar
  67. 67.
    F. Thompson, J. Emerson, W. Dalton, J. M. Yang, D. McGee, H. Villar, S. Knox, K. Massay, R. Weinstein, A. Bhattacharyya, and J. Trent (1993). Clonal chromosome abnormalities in human breast carcinomas. I. Twenty-eight cases with primary disease. Genes Chromosomes Cancer 7: 185-193.Google Scholar
  68. 68.
    J. Trent, J. M. Yang, J. Emerson, W. Dalton, D. McGee, K. Massay, F. Thompson, and H. Villar (1993). Clonal chromosome abnormalities in human breast carcinomas. II. Thirty-four cases with metastatic disease. Genes Chromosomes Cancer 7: 194-203.Google Scholar
  69. 69.
    L. Rønnov-Jessen, O. W. Petersen, V. E. Koteliansky, and M. J. Bissell (1995). The origin of the myofibroblast s in breast cancer. J. Clin. Invest. 95: 859-873.Google Scholar
  70. 70.
    A. R. Howlett, N. Bailey, C. Damsky, O. W. Petersen, and M. J. Bissell (1995). Cellular growth and survival are mediated by α1 integrins in normal human breast epithelium but not in breast carcinoma. J. Cell. Sci. 108: 1945-1957.Google Scholar
  71. 71.
    S. Eaton and K. Simons (1995). Apical, basal, and lateral cues for epithelial polarization. Cell 82: 5-8.Google Scholar
  72. 72.
    D. G. Drubin and W. J. Nelson (1996). Origins of cell polarity. Cell 84: 335-344.Google Scholar
  73. 73.
    R. O. Hynes (1992). Integrins: Versatility, modulation and signaling in cell adhesion. Cell 69: 11-25.Google Scholar
  74. 74.
    E. A. Clark and J. S. Brugge (1995). Integrins and signal transduction pathways: The road taken. Science 268: 233-239.Google Scholar
  75. 75.
    A. Ben-Ze'ev (1997). Cytoskeletal and adhesion proteins as tumor suppressors. Curr. Opin. Cell Biol. 9: 99-108.Google Scholar
  76. 76.
    M. A. Schwartz, M. D. Schaller, and M. H. Ginsberg (1995). Integrins: Emerging paradigms of signal transduction. Ann. Rev. Cell Dev. Biol. 11: 549-599.Google Scholar
  77. 77.
    R. L. Juliano and J. A. Varner (1993). Adhesion molecules in cancer: The role of integrins. Curr. Opin. Cell Biol. 5: 812-818.Google Scholar
  78. 78.
    M. M. Zutter and S. A. Santoro (1990). Widespread histologic distribution of the α2α1 integrin cell surface collagen receptor. Am. J. Pathol. 137: 113-120.Google Scholar
  79. 79.
    A. Sonnenberg, J. Calafat, H. Janssen, H. Daams, L. M. H. van der Raaij-Heimer, R. Falcioni, S. J. Kennel, J. D. Aplin, J. Baker, M. Loizidou, and D. Garrod (1991). Integrin α6α4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J. Cell Biol. 113: 907-917.Google Scholar
  80. 80.
    J. C. R. Jones, M. A. Kurpackus, and H. M. Cooper (1991). A function for the integrin α6α4 in the hemidesmosome. Cell Reg. 2: 427-438.Google Scholar
  81. 81.
    J. L. Jones, J. E. Royall, D. R. Critchley, and R. A. Walker (1997). Modulation of myoepithelial-associated α6α4 integrin in a breast cancer cell line alters invasive potential. Exp. Cell Res. 235: 25-333.Google Scholar
  82. 82.
    V. M. Weaver, W. O. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, and M. J. Bissell (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137: 231-245.Google Scholar
  83. 83.
    J. L. Jones, D. R. Critchley, and R. A. Walker (1992). Alteration of stromal protein and integrin expression in breast—a marker of premalignant change. J. Pathol. 167: 399-406.Google Scholar
  84. 84.
    G. K. Koukoulis, I. Virtanen, M. Korhonen, L. Litinen, V. Quaranta, and V. E. Gould (1991). Immunohistochemical localization of integrins in the normal, hyperplastic and neoplastic breast: Correlations with their functions as receptors and cell adhesion molecules. Am. J. Pathol. 139: 787-799.Google Scholar
  85. 85.
    M. Zutter, G. M Mazoujian, and S. A. Santoro (1990). Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast. Am. J. Pathol. 137: 863-870.Google Scholar
  86. 86.
    M.M. Zutter, H. R. Krigman, and S. A. Santoro (1993). Altered integrin expression in adenocarcinoma of the breast: Analysis by in situ hybridization. Am. J. Pathol. 142: 1439-1448.Google Scholar
  87. 87.
    F. Berdichevsky, R. Wetzels, M. Shearer, F. C. Martignone, S. Ramaekers, and J. Taylor-Papadimitriou (1994). Integrin expression in relation to cell phenotype and malignant change in the human breast. Mol. Cell. Differ. 2: 255-274.Google Scholar
  88. 88.
    S. Stahl, S. Weitzman, and J. C. Jones (1997). The role of laminin-5 and its receptors in mammary epithelial cell branching morphogenesis. J. Cell Sci. 110: 55-63.Google Scholar
  89. 89.
    G. Deng, Y. Lu, G. Zlotnikov, A. Thor, and H. S. Smith (1996). Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274: 2057-2059.Google Scholar
  90. 90.
    B. Mintz and K. Illmensee (1975). Normal genetically mosaic mice produced from malignant teratocarcinom a cells. Proc. Natl. Acad. Sci. U.S.A. 72: 3585-3589.Google Scholar
  91. 91.
    B. Mintz and R. A. Fleischman (1981). Teratocarcinomas and other neoplasms as developmental defects in gene expression. Adv. Cancer Res. 34: 211-278.Google Scholar
  92. 92.
    A.W. Stoker, C. Hatier, and M. J. Bissell (1990). The embryonic environment strongly attenuates v-src oncogenesis in mesenchymal and epithelial tissues, but not in endothelia. J. Cell Biol. 111: 217-228.Google Scholar
  93. 93.
    N. Boudreau, S. T. Reddy, A. W. Stoker, C. Fairman, and M. J. Bissell (1995). The embryonic environment and the extracellular matrix suppress oncogenic transformation by Rous sarcoma virus in the chick embryo. Mol. Cell. Differ. 3: 261-274.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Karen L. Schmeichel
  • Valerie M. Weaver
  • Mina J. Bissell

There are no affiliations available

Personalised recommendations