Control of Milk Secretion and Apoptosis DuringMammary Involution

  • Colin J. Wilde
  • ChristopherH. Knight
  • David J. Flint


Lactation depends on regular suckling or milkingof the mammary gland. Without this stimulus, milksecretion stops and mammary involution is induced.Involution caused by abrupt cessation of milk removal is characterized by de-differentiation andapoptosis of mammary epithelial cells, the extent andtime course of the latter varying between species.Apoptosis is inhibited and milk secretion is restored by re-suckling, if milk stasis is of shortduration. Mammary involution and apoptosis also occurduring weaning, even in concurrently-pregnant animalswhen the interval between lactations is restricted, suggesting that tissue remodeling is essentialfor subsequent lactation. Declining milk production inruminants after peak lactation is also associated with,and probably results from, net cell loss by apoptosis. Involution and apoptosis arecontrolled by changes in systemic galactopoietic hormonelevels, and by intra-mammary mechanisms responsive tomilk removal. Milk stasis precipitated by litter removal or cessation of milking may involveintra-mammary control related to physical distension ofthe epithelium. Local control of apoptosis in rodentsduring weaning, and after peak lactation in dairyanimals, may be due to the actions of milk-bornesurvival factors or their inhibitors, and can bemanipulated by frequency of milk removal.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. I. Walker, R. E.. Bennett, and J. F. R Kerr (1989). Cell death by apoptosis during involution of the lactating breast in mice and rats. Amer. J. Anat. 185:19–32.PubMedCrossRefGoogle Scholar
  2. 2.
    R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development 115: 1383–1395.Google Scholar
  3. 3.
    L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1996). Programmed cell death during mammary involution induced by weaning, litter removal and milk stasis. J. Cell. Physiol. 168:559–569.PubMedCrossRefGoogle Scholar
  4. 4.
    P Li, P. S. Rudland, D. G. Fernig, L. M. B. Finch, and C. J. Wilde (1998). Modulation of mammary development and programmed cell death by the frequency of milk removal in lactating goats. (Submitted for publication.)Google Scholar
  5. 5.
    M. T. Travers, M. C. Barber, E. Tonner, L. H. Quarrie, C. J. Wilde, and D.J. Flint (1996). The role of prolactin, and growth hormone in the regulation of casein gene expression and mammary cell survival:Relationships to milk synthesis and secretion. Endocrinology 137:1530–1539.PubMedCrossRefGoogle Scholar
  6. 6.
    L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1995). Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labeling. Cell Tissue Res. 281: 413–419.PubMedCrossRefGoogle Scholar
  7. 7.
    R. E. Goodman and F. L. Schanbacher (1991). Bovine lactoferrin mRNA: Sequence, analysis and expression in the mammary gland. Biochem. Biophys. Res. Commun. 180:75–84.PubMedCrossRefGoogle Scholar
  8. 8.
    C. J. Wilde, C. V. P. Addey, P. Li, and D. G. Fernig (1997). Programmed cell death in bovine mammary tissue during lactation and involution. Exp. Physiol. 82:943–953.PubMedGoogle Scholar
  9. 9.
    A. V. Capuco and R. M. Akers. (1999). Mammary involution in dairy animals. J. Mam. Gland Biol. Neoplasia. 4:137–144.CrossRefGoogle Scholar
  10. 10.
    B. D. Holst, W. L. Hurley, and D. R. Nelson (1987). Involution of the bovine mammary gland:histological and structural changes. J. Dairy Sci. 70:935–942.PubMedCrossRefGoogle Scholar
  11. 11.
    R. M. Akers, W. E. Beal, T. B. McFadden, and A. V. Capuco (1990). Morphometric analysis of involuting bovine mammary tissue after 21 or 42 days of nonsuckling. J. Anim. Sci. 68: 3604–3613.PubMedGoogle Scholar
  12. 12.
    W. L. Hurley (1989). Mammary gland function during involution. J. Dairy Sci. 72:1637–1646.PubMedCrossRefGoogle Scholar
  13. 13.
    L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1994). Local regulation of mammary apoptosis in the lactating goat. Biochem. Soc. Trans. 22:178S.Google Scholar
  14. 14.
    P. A. Fowler, C. H. Knight, G. G. Cameron, and M. A. Foster (1990). The use of magnetic resonance imaging in the study of goat mammary glands in vivo. J. Reprod. Fertil. 89:359–366.PubMedCrossRefGoogle Scholar
  15. 15.
    R. S. Talhouk, M. J. Bissell, and Z. Werb (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial cell function during involution. J. Cell Biol. 118:1271–1282.PubMedCrossRefGoogle Scholar
  16. 16.
    L. R. Lund, J. Rømer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Danø, and Z. Werb (1996). Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and-dependent pathways. Development 122:181–193.PubMedGoogle Scholar
  17. 17.
    P. Li, C. J. Wilde, D. G. Fernig, L. M. B. Finch, and P. S. Rudland (1997). Identification of cell types in the developing goat mammary gland: Evidence for a stem cell type during lactation. (Submitted for publication.)Google Scholar
  18. 18.
    J. Hamann and J. Reichmuth (1990). Compensatory milk production within the bovine udder: Effects of short-term non-milking of single quarters. J. Dairy Res. 57:17–22.PubMedCrossRefGoogle Scholar
  19. 19.
    M. S. Noble and W. L. Hurley (1997). Reinitiation of lactation function in the bovine mammary gland following a period of extended milk stasis. J. Dairy Sci. 80(Suppl. 1):P58.Google Scholar
  20. 20.
    A. Sorensen and C. H. Knight (1997). Restoration of lactation in mice after litter removal for various lengths of time. J. Reprod. Fertil. Abst. Series 19:46.Google Scholar
  21. 21.
    A. Sorensen and C. H. Knight (1998). Mammary apoptosis and cell proliferation during lactation rescue in mice. J. Reprod. Fertil. Abst. Series, (in press).Google Scholar
  22. 22.
    M. Peaker and C. J. Wilde (1996). Feedback control of milk secretion from milk. J. Mam. Gland Biol. Neoplasia 1: 307–315.CrossRefGoogle Scholar
  23. 23.
    L. J. Shipman, A. H. Docherty, C. H. Knight, and C. J. Wilde (1987). Metabolic adaptations in mouse mammary gland during a normal lactation cycle and in extended lactation. Q. J. Exp. Physiol. 72:303–311.PubMedGoogle Scholar
  24. 24.
    C. J. Wilde and N. J. Kuhn (1979). Lactose synthesis in the rat, and the effects of litter size and malnutrition. Biochem. J. 182:287–294.PubMedGoogle Scholar
  25. 25.
    R. L. Trivers (1974). Parent-offspring conflict. Amer. Zool. 14:249–264.Google Scholar
  26. 26.
    M. Peaker (1989). Evolutionary strategies in lactation: Nutritional implications. Proc. Nutr. Soc. 48:53–57.PubMedCrossRefGoogle Scholar
  27. 27.
    C. H. Knight and C. J. Wilde (1988). Milk production in concurrently pregnant and lactating goats mated out of season. J. Dairy Res. 55:487–493.PubMedCrossRefGoogle Scholar
  28. 28.
    P. A. Fowler, C. H. Knight, and M. A. Foster (1991). Omitting the dry period between lactations does not reduce subsequent milk production in goats. J. Dairy Res. 58:13–19.PubMedCrossRefGoogle Scholar
  29. 29.
    C. J. Wilde and C. H. Knight (1989). Metabolic adaptations in mammary gland during the declining phase of lactation. J. Dairy Sci. 72:1679–1692.PubMedCrossRefGoogle Scholar
  30. 30.
    L. G. Sheffield and L. C. Kotolski (1992). Prolactin inhibits programmed cell death during mammary gland involution. FASEB J. 6:A1184.Google Scholar
  31. 31.
    Z. Feng, A. Marti, B. Jehn, H. J. Altermatt, G. Chicaiza, and R. Jaggi (1995). Glucorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J. Cell Biol. 131:1095–1103.PubMedCrossRefGoogle Scholar
  32. 32.
    E. Tonner, M. C. Barber, M. T. Travers, A. Logan, and D. J. Flint (1997). Hormonal control of insulin-like growth factor-binding protein-5 production in the involuting mammary gland of the rat. Endocrinology 138:5101–5107.PubMedCrossRefGoogle Scholar
  33. 33.
    S. Deeks, J. Richards, and S. Nandi (1988). Maintenance of normal rat mammary epithelial cells by insulin and insulin-like growth factor I. Exp. Cell Res. 174:448–460.PubMedCrossRefGoogle Scholar
  34. 34.
    D. L. Hadsell, N. M. Greenberg, J. M. Fligger, C. R. Baumrucker, and J. M. Rosen (1996). Targetted expression of des(1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 137:321–330.PubMedCrossRefGoogle Scholar
  35. 35.
    S. Neuenschwander, A. Schwartz, T. L. Wood, C. T. Roberts Jr., L. Hennighausen, and D. LeRoith (1996). Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J. Clin. Invest. 97:2225–2232.PubMedCrossRefGoogle Scholar
  36. 36.
    M. Li, X. Liu, G. Robinson, U. Bar-Peled, K.-U. Wagner, W. S. Young, L. Hennighausen, and P. A. Furth (1997). Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc. Natl. Acad. Sci. U.S.A. 94:3425–3430.PubMedCrossRefGoogle Scholar
  37. 37.
    A. Marti, Z. W. Feng, H. J. Altermatt, and R Jaggi (1997). Milk accumulation triggers apoptosis of mammary epithelial cells. Eur. J. Cell Biol. 73:158–165.PubMedGoogle Scholar
  38. 38.
    J. J. Letterio, A. G. Geiser, A. B. Kulkarni, N. S. Roche, M. B. Sporn, and A. B. Roberts (1994). Maternal rescue of transforming growth factor-β1 null mice. Science 264: 1936–1938.PubMedCrossRefGoogle Scholar
  39. 39.
    C. S. Attwood, M. Ikeda, and B. K. Vonderhaar (1995). Involution of mouse mammary glands in whole organ culture: A model for studying programmed cell death. Biochem. Biophys. Res. Commun. 207:860–867.CrossRefGoogle Scholar
  40. 40.
    M. T. Heuptle, Y. M. L. Suard, E. Bogenman, H. Reggio, L. Racine, and J.-P. Kraehenbuhl (1983). Effect of cell shape change on the function and differentiation of rabbit mammary cells in culture. J. Cell Biol. 96:425–434.Google Scholar
  41. 41.
    E. Y.-H. Lee, G. Parry, and M. J. Bissell (1984). Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98:146–155.PubMedCrossRefGoogle Scholar
  42. 42.
    D. R. Pitelka and B. N. Taggart (1983). Mechanical tension induces lateral movement of intramembrane components of the tight junction: Studies on mouse mammary cells in culture. J. Cell Biol. 96:606–612.PubMedCrossRefGoogle Scholar
  43. 43.
    K.-I. Enomoto, K. Furuya, S. Yamagishi, and T. Maeno (1992). Mechanically-induced electrical and intracellular responses in normal and cancerous mammary cells. Cell Calcium 13: 501–511.PubMedCrossRefGoogle Scholar
  44. 44.
    K.-I. Enomoto, K. Furuya, S. Yamagishi, T. Oka, and T. Maeno (1994). The increase in intracellular Ca2+ concentration by mechanical stimulation is propagated via release of pyrophorylated nucleotides in mammary epithelial cells. Pflügers Archiv. 427:533–542.PubMedCrossRefGoogle Scholar
  45. 45.
    E. L. Huguet, K. Smith, R. Bicknell, and A. L. Harris (1995). Regulation of Wnt5a expression in human mammary epithelial cells by cell shape, confluence and hepatocyte growth factor. J. Biol. Chem. 270:12851–12856.PubMedCrossRefGoogle Scholar
  46. 46.
    P. O. Schischmanoff, P. Yaswen, M. K. Parra, G. Lee, J. A. Chasis, N. Mohandas, and J. G. Conboy (1996). Cell shape-dependent regulation of protein 4.1 alternative pre-mRNA splicing in mammary epithelial cells. J. Biol. Chem. 272: 10254–10259.Google Scholar
  47. 47.
    M. Peaker (1980). The effect of raised intra-mammary pressure on mammary function in the goat in relation to the cessation of lactation. J. Physiol. 301:415–428.PubMedGoogle Scholar
  48. 48.
    R. G. Saacke and C. W. Heald (1974). Cytological aspects of milk formation and secretion. In B. L. Larson and V. R. Smith, (eds.), Lactation: A Comprehensive Treatise, Vol. II, Academic Press, New York, pp. 147–189.Google Scholar
  49. 49.
    A. J. Molenaar, S. R. Davis, and R. J. Wilkins (1992). Expression of α-lactalbumin, αs1 casein and lactoferrin genes is heterogeneous in sheep and cattle mammary tissue. J. Histochem. Cytochem. 40:611–618.PubMedCrossRefGoogle Scholar
  50. 50.
    N. Boudreau, C. J. Simpson, Z. Werb, and M. J. Bissell (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893.PubMedCrossRefGoogle Scholar
  51. 51.
    S. Pullan, J. Wilson, A. Metcalfe, G. M. Edwards, N Goberdhan, J. Tilly, J. A. Hickman, C. Dive, and C. S. Streuli (1996). Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J. Cell Sci. 109:631–642.PubMedGoogle Scholar
  52. 52.
    D. M. Moore, A. W. Vogl, K. Baimbridge, and J. T. Emerman (1987). Effect of calcium on oxytocin-induced contraction of mammary gland myoepithelium as visualized by NBD-phallicidin. J. Cell Sci. 88:563–569.PubMedGoogle Scholar
  53. 53.
    M. Sopel (1995). Electron-microscopic cytochemical localization of adenylate cyclase activity in the myoepithelial cells of the lactating mouse mammary gland. Cell Tissue Res. 279: 441–444.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Colin J. Wilde
  • ChristopherH. Knight
  • David J. Flint

There are no affiliations available

Personalised recommendations