Journal of Mammary Gland Biology and Neoplasia

, Volume 4, Issue 1, pp 105–122 | Cite as

The Comparative Pathology of Human and Mouse Mammary Glands

  • Robert D. Cardiff
  • Sefton R. Wellings
Article

Abstract

The mouse has emerged as a primary animal modelfor human breast cancer because the mammary glands ofthe two species are very similar in structure andfunction. In this regard the TDLU4 and LAhave similar morphology. The mouse, infected by MMTV,develops "spontaneous" tumors with specificbut limited tumor phenotypes. The advent of geneticmanipulation has created transgenic mice that develophyperplasias and tumors morphologically and cytochemicallycomparable to lesions in humans. Even experiencedpathologists have difficulty distinguishing betweenlesions from the two species, and the morphologicalsimilarities support the utility of the mouse model inunderstanding human breast cancer. In this essay wereview our experience with the histopathology of humanand mouse mammary disease by comparing the normal gland with hyperplastic, dysplastic and neoplasticlesions of traditional and transgenic origin.

COMPARATIVE HISTOPATHOLOGY MAMMARY GLAND BREAST CANCER BREAST DISEASES TRANSGENIC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. M. Hamilton (1974). Comparative aspects of mammary tumors. Adv. Cancer Res. 19:1–45.Google Scholar
  2. 2.
    J. Russo, B. A. Gusterson, A. E. Rogers, I. H. Russo, S. R. Wellings, and M. J. van Zwieten (1990). Comparative study of human and rat mammary tumorigenesis. Lab Invest. 62:244–278.Google Scholar
  3. 3.
    W. J. Muller (1991). Expression of activated oncogenes in the murine mammary gland: Transgenic models for human breast cancer. Cancer Metast. Rev. 10:217–227.Google Scholar
  4. 4.
    R. D. Cardiff (1996). The biology of mammary transgenes: Five rules. J. Mam. Gland Biol. Neoplasia 1:61–73.Google Scholar
  5. 5.
    R. D. Cardiff, E. Sinn, W. Muller, and P. Leder (1991). Transgenic oncogene mice. Tumor phenotype predicts genotype. Am. J. Pathol. 139:495–501.Google Scholar
  6. 6.
    S. R. Wellings, H. M. Jensen, and R. G. Marcum (1975). An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J. Natl. Cancer Inst. 55:231–273.Google Scholar
  7. 7.
    S. R. Wellings, H. M. Jensen, and M. R. DeVault (1976). Persistent and atypical lobules in the human breast may be precancerous. Experientia 32:1463–1465.Google Scholar
  8. 8.
    R. D. Cardiff, S. R. Wellings, and L. J. Faulkin (1977). Biology of breast preneoplasia. Cancer 39:2734–2746.Google Scholar
  9. 9.
    R. R. Anderson (1978). Development Of Mammary Gland In B.L. Larson and V.R. Smith, (eds.), Lactation: A Comprehensive Treatise, Academic Press, New York 4:3–40.Google Scholar
  10. 10.
    J. R. Harris, S. Hellman, I. C. Henderson, and D. W. Kinne (1996). Breast Diseases, Lippicott-Raven, Philadelphia.Google Scholar
  11. 11.
    R. Dulbecco, M. Henahan, and B. Armstrong (1982). Cell types and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci. U.S.A. 79:7346–7350.Google Scholar
  12. 12.
    R. D. Cardiff (1998). Are the TDLU of the human the same as the LA of mice? J. Mam. Gland Biol. Neoplasia 3:3–5.Google Scholar
  13. 13.
    I. H. Russo and J. Russo (1998). Role of hormones in mammary cancer initiation and progression. J. Mam. Gland Biol. Neoplasia 3:49–62.Google Scholar
  14. 14.
    S. A. Bartow (1998). Use of the autopsy in study ontogeny and expression of the estrogen receptor gene in human breast. J. Mam. Gland Biol. Neoplasia 3:37–48.Google Scholar
  15. 15.
    J. L. Fendrick, A.M. Raafat, and S.Z. Haslam (1998). Mammary gland growth and development from the postnatal period to postmeonopause: Ovarian steroid receptor ontogeny and regulation the mouse. J. Mam. Gland Biol. Neoplasia 3:7–22.Google Scholar
  16. 16.
    S. R. Wellings (1980). Development of human breast cancer. Adv. Cancer Res. 31:287–314.Google Scholar
  17. 17.
    S. R. Wellings (1980). A hypothesis of the origin of human breast cancer from the terminal ductal lobular unit. Pathol. Res. Pract. 166:515–535.Google Scholar
  18. 18.
    R. S. Rudland (1987). Stem cells and the development of mammary cancers in experimental rats and in humans. Cancer Metast. Rev. 6:55–83.Google Scholar
  19. 19.
    G. H. Smith and D. Medina (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J. Cell Sci. 90:173–183.Google Scholar
  20. 20.
    E. C. Kordon and G. H. Smith (1998). An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921–1930.Google Scholar
  21. 21.
    S. Nandi, R. C. Guzman, and J. Yang (1995). Hormones and mammary carcinogenesis in mice, rats, and humans: A unifying hypothesis. Proc. Natl. Acad. Sci. U.S.A. 92:3650–3657.Google Scholar
  22. 22.
    D. L. Page (1989). Pathology of preinvasive and early breast cancer. Curr. Opin. Oncol. 1:277–283.Google Scholar
  23. 23.
    D. DeLeon, M.B. Zelinski-Wooten, and M.S. Barkely (1990). Hormonal basis of variation in oestrus cyclicity in selected strains of mice. J. Reprod. Fertil. 89:117–126.Google Scholar
  24. 24.
    F. Squartini, F. Basolo, and M. Bistocchi (1983). Lobuloacveolar differentiation and tumorigenesis: two separate activities of mouse mammary tumor virus. Cancer Res. 43:5879–5882.Google Scholar
  25. 25.
    V. M. Weaver, A. H. Fischer, O. W. Peterson, and M. J. Bissell (1996). The importance of the microenvironment in breast cancer progression: Recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem. Cell Biol. 74:833–851.Google Scholar
  26. 26.
    R. C. Hovey, T.B. McFadden, and R. M. Akers, (1998). Regulation of mammary gland growth and morphogenesis by the mammary fat pad: A species comparison. J. Mam. Gland Biol. Neoplasia 4(1):53–68.Google Scholar
  27. 27.
    H. Vorheer (1978). Human lactation and breast feeding. In B.L. Larson and V. R. Smith (eds.), Lactation: A Comprehensive Treatise, Academic Press, New York, 4: 182–280.Google Scholar
  28. 28.
    A. K. Lascelles and C.S. Lee (1978). Involution of the Mammary Gland. Lactation: A Comprehensive Treatise. B.L. Larson and V.R. Smith, (eds.), Academic Press, New York, 4:115–179.Google Scholar
  29. 29.
    R. Strange, R. R. Friis, L. T. Bemis, and F. J. Geske (1995). Programmed cell death during mammary gland involution. Methods Cell Biol. 46:355–368.Google Scholar
  30. 30.
    L. J. Beuving (1969). Effects of ovariectomy on preneoplastic nodule formation and maintenance in the mammary glands of carcinogen-treated rats. J. Natl. Cancer Inst. 43:1181–1189.Google Scholar
  31. 31.
    F. A. Tavassoli (1997). The influence of endogenous and exogenous reproductive hormones on the mammary glands with emphasis on experimental studies in rhesus monkeys. Verh. Dtsch. Ges. Pathol. 81:514–520.Google Scholar
  32. 32.
    D. M. Ornitz, R. W. Moreadith, and P. Leder (1991). Binary system for regulating transgene expression in mice: Targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc. Natl. Acad. Sci. U.S.A. 88:698–702.Google Scholar
  33. 33.
    D. Gallahan, C. Jhappan, G. Robinson, L. Hennighausen, R. Sharp, E. Kordon, R. Callahan, G. Merlino, and G. H. Smith (1996). Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 56:1775–1785.Google Scholar
  34. 34.
    C. Jhappan, A. G. Geiser, E. C. Kordon, D. Bagheri, L. Hennighausen, A. B. Roberts, G. H. Smith, and G. Merlino (1993). Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 12:1835–1845.Google Scholar
  35. 35.
    C. T. Guy, S. K. Muthuswamy, R. D. Cardiff, P. Soriano, and W. J. Muller (1994). Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev. 8:23–32.Google Scholar
  36. 36.
    P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, S. Z. Haslam, R. T. Bronson, S. J. Elledge, and R. A. Weinberg (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630.Google Scholar
  37. 37.
    D. M. Ornitz, R. D. Cardiff, A. Kuo, and P. Leder (1992). Int-2, an autocrine and/or ultra-short-range effector in transgenic mammary tissue transplants. J. Natl. Cancer Inst. 84:887–892.Google Scholar
  38. 38.
    C. T. Guy, R. D. Cardiff, and W. J. Muller (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Mol. Cell Biol. 12:954–961.Google Scholar
  39. 39.
    A. Tehranian, D. W. Morris, B. H. Min, D. J. Bird, R. D. Cardiff, and P. A. Barry (1996). Neoplastic transformation of prostatic and urogenital epithelium by the polyoma virus middle T gene. Am. J. Pathol. 149:1177–1191.Google Scholar
  40. 40.
    W. J. Muller, C. L. Arteaga, S. K. Muthuswamy, P. M. Siegel, M. A. Webster, R. D. Cardiff, K. S. Meise, F. Li, S. A. Halter, and R. J. Coffey (1996). Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Mol. Cell Biol. 16:5726–5736.Google Scholar
  41. 41.
    S. A. Halter, P. Dempsey, Y. Matsui, M. K. Stokes, R. Graves-Deal, B. L. Hogan, and R. J. Coffey (1992). Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor-alpha. Characterization of mammary gland and skin proliferations. Am. J. Pathol. 140:1131–1146.Google Scholar
  42. 42.
    G. H. Smith, R. Sharp, E. C. Kordon, C. Jhappan, and G. Merlino (1995). Transforming growth factor-alpha promotes mammary tumorigenesis through selective survival and growth of secretory epithelial cells. Am. J. Pathol. 147:1081–1096.Google Scholar
  43. 43.
    M. A. Webster, J. N. Hutchinson, M. J. Rauh, S. K. Muthuswamy, M. Anton, C. G. Tortorice, R. D. Cardiff, F. L. Graham, J. A. Hassell, and W. J. Muller (1998). Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol. Cell Biol. 18:2344–2359.Google Scholar
  44. 44.
    M. A. Webster, R. D. Cardiff, and W. J. Muller (1995). Induction of mammary epithelial hyperplasias and mammary tumors in transgenic mice expressing a murine mammary tumor virus/activated c-src fusion gene. Proc. Natl. Acad. Sci. U.S.A. 92:7849–7853.Google Scholar
  45. 45.
    C. Jhappan, D. Gallahan, C. Stahle, E. Chu, G. H. Smith, G. Merlino, and R. Callahan (1992). Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 6:345–355.Google Scholar
  46. 46.
    T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.Google Scholar
  47. 47.
    W. D. Dupont and D. L. Page (1985). Risk factors for breast cancer in women with proliferative breast disease. N. Engl. J. Med. 312:146–151.Google Scholar
  48. 48.
    N. A. Consensus Report (1986). Is ‘fibrocystic disease’ of the breast precancerous? Arch. Pathol. Lab. Med. 110:171–173.Google Scholar
  49. 49.
    C. A. Bodian, K. H. Perzin, R. Lattes, P. Hoffmann, and T. G. Abernathy (1993). Prognostic significance of benign proliferative breast disease [see comments]. Cancer 71:3896–3907.Google Scholar
  50. 50.
    R. D. Cardiff (1984). Protoneoplasia: The molecular biology of murine mammary hyperplasia. Adv. Cancer Res. 42:167–190.Google Scholar
  51. 51.
    K. B. DeOme, M. J. Miyamoto, R. C. Osborn, R. C. Guzman, and K. Lum (1978). Detection of inapparent nodule-transformed cells in the mammary gland tissues of virgin female BALB/cfC3H mice. Cancer Res. 38:2103–2111.Google Scholar
  52. 52.
    H. M. Jensen, J. R. Rice, and S. R. Wellings (1976). Preneoplastic lesions in the human breast. Science 191:295–297.Google Scholar
  53. 53.
    H. M. Jensen and S. R. Wellings (1976). Preneoplastic lesions of the human mammary gland transplanted into the nude athymic mouse. Cancer Res. 36:2605–2610.Google Scholar
  54. 54.
    L. J. Faulkin, D. J. Mitchell, L. J. Young, D. W. Morris, R. W. Malone, R. D. Cardiff, and M. B. Gardner (1984). Hyperplastic and neoplastic changes in the mammary glands of feral mice free of endogenous mouse mammary tumor virus provirus. J. Natl. Cancer Inst. 73:971–982.Google Scholar
  55. 55.
    C. W. Daniel, K. B. De Ome, J. T. Young, P. B. Blair, and L. J. Faulkin, Jr. (1968). The in vivo life span of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proc. Natl. Acad. Sci. U.S.A. 61:53–60.Google Scholar
  56. 56.
    D. W. Morris, P. A. Barry, H. D. Bradshaw, Jr., and R. D. Cardiff (1990). Insertion mutation of the int-1 and int-2 loci by mouse mammary tumor virus in premalignant and malignant neoplasms from the GR mouse strain. J. Virol. 64:1794–1802.Google Scholar
  57. 57.
    L. Bouchard, L. Lamarre, P. J. Tremblay, and P. Jolicoeur (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57:931–936.Google Scholar
  58. 58.
    N. Tulchin, F.S. Lee, L. Ornstein, J. Strauchen, and R.D. Cardiff (1995). c-myc protein distribution: Mammary adenocarcinomas of MTV/MYC transgenic mice. Int'l. J. Oncol. 7:5–9.Google Scholar
  59. 59.
    K. Weijer, K. W. Head, W. Misdorp, and J. F. Hampe (1972). Feline malignant mammary tumors. I. Morphology and biology: Some comparisons with human and canine mammary carcinomas. J. Natl. Cancer Inst. 49:1697–1704.Google Scholar
  60. 60.
    M. M. Mason, A. E. Bogden, V. Ilievski, H. J. Esber, J. R. Baker, and H. C. Chopra (1972). History of a rhesus monkey adenocarcinoma containing virus particles resembling oncogenic RNA viruses. J. Natl. Cancer Inst. 48:1323–1331.Google Scholar
  61. 61.
    T. Dunn (1959). Morphology of mammary tumors in mice. In F. Homburger (ed.), Physiopathology of Cancer. A. J. Phiebig: New York., pp. 38–83.Google Scholar
  62. 62.
    W. J. Muller, F. S. Lee, C. Dickson, G. Peters, P. Pattengale, and P. Leder (1990). The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J. 9:907–913.Google Scholar
  63. 63.
    T. F. Lane and P. Leder (1997). Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15:2133–2144.Google Scholar
  64. 64.
    R. J. Munn, M. Webster, W. J. Muller, and R. D. Cardiff (1995). Histopathology of transgenic mouse mammary tumors (a short atlas). Semin. Cancer Biol. 6:153–158.Google Scholar
  65. 65.
    W. J. Muller, E. Sinn, P. K. Pattengale, R. Wallace, and P. Leder (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.Google Scholar
  66. 66.
    C. T. Guy, R. D. Cardiff, and W. J. Muller (1996). Activated neu induces rapid tumor progression. J. Biol. Chem. 271:7673–7678.Google Scholar
  67. 67.
    C. T. Guy, M. A. Webster, M. Schaller, T. J. Parsons, R. D. Cardiff, and W. J. Muller (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. U.S.A. 89:10578–10582.Google Scholar
  68. 68.
    D. M. Barnes, J. Bartkova, R. S. Camplejohn, W. J. Gullick, P. J. Smith, and R. R. Millis (1992). Overexpression of the c-erbB-2 oncoprotein: Why does this occur more frequently in ductal carcinoma in situ than in invasive mammary carcinoma and is this of prognostic significance? Eur. J. Cancer 28:644–648.Google Scholar
  69. 69.
    T. J. Liang, A. E. Reid, R. Xavier, R. D. Cardiff, and T. C. Wang (1996). Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J. Clin. Invest. 97:2872–2877.Google Scholar
  70. 70.
    J. F. Nelson, K. Karelus, M. D. Bergman, and L. S. Felicio (1995). Neuroendocrine involvement in aging: Evidence from studies of reproductive aging and caloric restriction. Neurobiol. Aging 16:837–843; see discussion pp. 855–856.Google Scholar
  71. 71.
    J. Vaage and J. P. Harlos (1987). Spontaneous metastasis from primary C3H mouse mammary tumors. Cancer Res. 47:547–550.Google Scholar
  72. 72.
    L. L. Colombo, D. E. Gomez, L. Puricelli, M. C. Vidal, R. Ponzio, and E. Bal de Kier Joffe (1990). In vivo selection and characterization of a murine mammary tumor subline with high potential for spontaneous lymph node metastasis. J. Surg. Oncol. 45:190–195.Google Scholar
  73. 73.
    S. F. Juacaba, E. Horak, J. E. Price, and D. Tarin (1989). Tumor cell dissemination patterns and metastasis of murine mammary carcinoma. Cancer Res. 49:570–575.Google Scholar
  74. 74.
    E. N. Unemori, N. Ways, and D. R. Pitelka (1984). Metastasis of murine mammary tumour lines from the mammary gland and ectopic sites. Brit. J. Cancer. 49:603–614.Google Scholar
  75. 75.
    D. R. Pitelka, S. T. Hamamoto, and B. N. Taggart (1980). Basal lamina and tissue recognition in malignant mammary tumors. Cancer Res. 40:1600–1611.Google Scholar
  76. 76.
    R. Callahan (1996). MMTV-induced mutations in mouse mammary tumors: Their potential relevance to human breast cancer. Breast Cancer Res. Treat. 39:33–44.Google Scholar

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Robert D. Cardiff
  • Sefton R. Wellings

There are no affiliations available

Personalised recommendations