Advertisement

Foundations of Physics

, Volume 28, Issue 3, pp 361–374 | Cite as

A Classical Analogy of Entanglement

  • Robert J. C. Spreeuw
Article

Abstract

A classical analogy of quantum mechanical entanglement is presented, using classical light beams. The analogy can be pushed a long way, only to reach its limits when we try to represent multiparticle, or nonlocal, entanglement. This demonstrates that the latter is of exclusive quantum nature. On the other hand, the entanglement of different degrees of freedom of the same particle might be considered classical. The classical analog cannot replace Einstein-Podolsky-Rosen type experiments, nor can it be used to build a quantum computer. Nevertheless, it does provide a reliable guide to the intuition and a tool for visualizing abstract concepts in low-dimensional Hilbert spaces.

Keywords

Hilbert Space Light Beam Quantum Computer Type Experiment Abstract Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. Schrödinger, Naturwissenschaften 23, 807, 823, 844 (1935).Google Scholar
  2. 2.
    C. Monroe, D. Meekhof, B. King, and D. Wineland, Science 272, 1131 (1996).Google Scholar
  3. 3.
    M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996).Google Scholar
  4. 4.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).Google Scholar
  5. 5.
    J. S. Bell, Physics (N.Y.) 1, 195 (1965).Google Scholar
  6. 6.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).Google Scholar
  7. 7.
    A. Ekert, Phys. Rev. Lett. 67, 661 (1991).Google Scholar
  8. 8.
    D. Deutsch, Proc. R. Soc. London A 400, 97 (1985).Google Scholar
  9. 9.
    C. H. Bennett, Phys. Today 48 (10), 24 (1995), and references therein.Google Scholar
  10. 10.
    D. M. Greenberger, M. A. Horne, and A. Zeilinger, in Quantum Interferometry II, F. De Martini, G. Denardo, and Y. Shih, eds. (Wiley-VCH, Weinheim, 1996).Google Scholar
  11. 11.
    R. J. C. Spreeuw and J. P. Woerdman, in Progress in Optics XXXI, E. Wolf, ed. (Elsevier, Amsterdam, 1993), pp. 263-319.Google Scholar
  12. 12.
    R. C. Jones, J. Opt. Soc. Am. 31, 488(1941).Google Scholar
  13. 13.
    B Schumacher, Phys. Rev. A 51, 2738 (1995).Google Scholar
  14. 14.
    P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, Phys. Rev. A 52, 3554 (1995).Google Scholar
  15. 15.
    Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, Phys. Rev. Lett. 75, 4710 (1995).Google Scholar
  16. 16.
    C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 75, 4714 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Robert J. C. Spreeuw

There are no affiliations available

Personalised recommendations