Advertisement

Journal of Materials Science

, Volume 32, Issue 21, pp 5833–5847 | Cite as

Microstructure and the fracture behaviou of a Ti-24Al-11Nb intermetallic

  • W. O SOBOYEJO
  • P. B ASWATH
  • L XU
Article

Abstract

The results of a study of the effects of heat treatment on the microstructure and fracture behaviour of an α2-based Ti-24Al-11Nb intermetallic are reported in this paper. The effects of cooling rate, annealing temperature and annealing duration on the microstructure are discussed in detail. Room- and elevated-temperature fracture mechanisms are elucidated. Toughening is shown to mainly occur by crack-tip blunting, and to a lesser extent via crack bridging and crack deflection mechanisms. A new micromechanics model is presented for the estimation of the shielding due to crack-tip blunting.

Keywords

Fracture Toughness Stress Intensity Factor Compression Strength Furnace Cool Fracture Surface Morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. O. SOBOYEJO, Metall. Trans. 23A (1992) 1737.CrossRefGoogle Scholar
  2. 2.
    P. B. ASWATH, Ph.D. thesis, Brown University, Providence, RI, (1990).Google Scholar
  3. 3.
    H. T. KESTNER-WEYKAMP, C. H. WARD, T. F. BRODERICK and M. J. KAUFMAN, Scripta Metall. 23 (1989) 1697.CrossRefGoogle Scholar
  4. 4.
    W. O. SOBOYEJO, in Proceedings 7th World Conference on Titanium, San Diego, August 1993, edited by F. H. Froes and I. L. Kaplan (The Metallurgical Society, Warrendale, PA, 1993) vol. 1, p. 359.Google Scholar
  5. 5.
    D. B. KNORR and N. S. STOLOFF, Mater. Sci. Engng A123 (1990) 81.CrossRefGoogle Scholar
  6. 6.
    A. K. GOGIA, D. BANERJEE and T. K. NANDY, Metall. Trans. 21A (1990) 609.CrossRefGoogle Scholar
  7. 7.
    A. K. GOGIA, T. K. NANDY, D. BANERJEE and Y. MAHAJAN, in Proceedings 6th World Conference on Titanium, edited by P. Lacombe, R. Tricot and G. Beringer, Suppl. to J. Phys. (1988) 1097.Google Scholar
  8. 8.
    D. BANERJEE, A. K. GOGIA and T. K. NANDY, Metall. Trans. 21A (1990) 627.CrossRefGoogle Scholar
  9. 9.
    C. WARD, Int. Met. Revs 38 (1993) 79.CrossRefGoogle Scholar
  10. 10.
    P. B. ASWATH and S. SURESH, Mater. Sci. Engng A114 (1989) L1.Google Scholar
  11. 11.
    P. B. ASWATH, W. O. SOBOYEJO, and S. SURESH, in ‘‘Fatigue ‘90’’, edited by K. Tanaka and H. Kitagawa (Materials and Components Engineering Publications Ltd., Warley, UK, 1990) Vol. III, p. 1941.Google Scholar
  12. 12.
    P. B. ASWATH and S. SURESH, Metall. Trans. 22 (1991) 817.CrossRefGoogle Scholar
  13. 13.
    idem, in ‘‘Elevated temperature crack growth’’, edited by S. Mall and T. Nicholas (ASME Publications, New York, NY, 1990) p. 69.Google Scholar
  14. 14.
    C. H. WARD, A. W. THOMPSON and J. C. WILLIAMS, Metall. Trans. 26A (1995) 703.CrossRefGoogle Scholar
  15. 15.
    D. L. DAVIDSON, J. B. CAMPBELL and R. A. PAGE, ibid. 22A (1991) 377.CrossRefGoogle Scholar
  16. 16.
    D. BANERJEE, A. K. GOGIA, T. K. NANDY and V. A. JOSHI, Acta Metall. 36 (1988) 871.CrossRefGoogle Scholar
  17. 17.
    R. STRYCHOR, J. C. WILLIAMS and W. A. SOFFA, Metall. Trans. 19A (1988) 225.CrossRefGoogle Scholar
  18. 18.
    R. T. DEHOFF and F. N. RHINES, Eds., ‘‘Quantitative microscopy’’ (McGraw Hill, New York NY, 1968).Google Scholar
  19. 19.
    S. SURESH and J. R. BROCKENBROUGH, Acta Metall. 36 (1988) 1455.CrossRefGoogle Scholar
  20. 20.
    W. O. SOBOYEJO and C. MERCER, Scripta Metall. Mater. 30 (1994) 1515.CrossRefGoogle Scholar
  21. 21.
    J. C. CHESNUTT, C. G. RHODES and J. C. WILLIAMS, in ‘‘Fractography-microscopic cracking processes,’’ ASTM STP 600 (American Society For Testing and materials, Philadelphia PA, 1976) p. 99.CrossRefGoogle Scholar
  22. 22.
    S. GITTIS and D. A. KOSS, in ‘‘High temperature ordered intermetallic alloys lll,’’ edited by C. Koch and N. S. Stoloff (Materials Research Society, Pittsburgh, PA, 1989) p. 323.Google Scholar
  23. 23.
    K. S. CHAN, Metall. Trans. 23A (1992) 183.CrossRefGoogle Scholar
  24. 24.
    S. SURESH, ibid. 16A (1985) 249.CrossRefGoogle Scholar
  25. 25.
    B. COTTRELL and J. R. RICE, Int. J. Fracture 16 (1980) 155.CrossRefGoogle Scholar
  26. 26.
    L. R. F. ROSE, ibid. 31 (1986) 233.CrossRefGoogle Scholar
  27. 27.
    R. G. HOAGLAND and J. D. EMBURY, J. Amer. Ceram. Soc. 63 (1980) 404.CrossRefGoogle Scholar
  28. 28.
    A. G. EVANS and K. T. FABER, in ‘‘Fracture in ceramics materials’’, edited by A. G. Evans, (Noyes Publications, Park Ridge, NJ, 1984) p. 109.Google Scholar
  29. 29.
    J. W. HUTCHINSON, Acta Metall. 35 (1987) 1605.CrossRefGoogle Scholar
  30. 30.
    B. BUDIANSKY, J. C. AMAZIGO and A. G. EVANS, J. Mech. Phys. Solids 36 (1988) 167.CrossRefGoogle Scholar
  31. 31.
    H. A. LIPSITT, D. SHECHTMAN and R. E. SCHAFRIK, Metall. Trans. 11 1369.Google Scholar
  32. 32.
    W. O. SOBOYEJO, D. S. SCHWARTZ and S. M. L. SASTRY, ibid. 23A (1992) 2039.Google Scholar
  33. 33.
    F. H. FROES, D. EYLON and H. B. BOMBERGER, "Titanium technology: present status and future trends (Titanium Development Association, Boulder, CO, 1985).Google Scholar
  34. 34.
    J. W. HUTCHINSON, J. Appl. Mech. 50 (1983) 1042.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • W. O SOBOYEJO
    • 1
  • P. B ASWATH
    • 1
    • 2
  • L XU
    • 1
  1. 1.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Materials Science Program, Department of Mechanical EngineeringUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations