Journal of Materials Science

, Volume 32, Issue 24, pp 6619–6623 | Cite as

Sintering and humidity-sensitive behaviour of the ZnCr2O4–K22CrO4 ceramic system

  • M. Bayhan
  • T. Hashemi
  • A.W. Brinkman


Solid state reaction at elevated temperatures and the sintering behaviour of zinc chromite formed by zinc oxide and chromite oxide were investigated. Crystalline structure, surface and fractured morphologies and humidity-sensitivity characteristics of ZnCr2O4–K2CrO4–CuO were studied. The fired ceramic body, which proved to be mainly constructed from ZnCr2O4 spinel grains, was porous. The humidity characteristics of the sensor showed that the resistance decreased as a logarithmic function with an increase in humidity. The resistance values obtained were about 6×109 Ω and 3×104 Ω at 25 and 93% relative humidity (RH), respectively. Based on a.c. impedance measurements, an equivalent circuit associated with a network of resistors together with series capacitors has been suggested. It is assumed that such an equivalent circuit model of the sensor under the moist conditions represents the sensing mechanism as a diffusion process.


Chromite Zinc Oxide Equivalent Circuit Model Ceramic Body Potassium Chromate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. T. JOHNSON, JR and R. M. BIEFELD, Mater. Res. Bull. 14 (1979) 537.CrossRefGoogle Scholar
  2. 2.
    T. NITTA, Z. TERADA and S. HAYAKAWA, J. Amer. Ceram. Soc. 63 (1980) 295.CrossRefGoogle Scholar
  3. 3.
    Y. SHIMIZU, H. ARAI and T. SEIYAMA, Denki Kagaku 50 (1982) 831.Google Scholar
  4. 4.
    H. TAGUCHI, Y. TAKAHASHI and C. MATSUMOTO, Yogyo-kyokai-shi 88 (1980) 566.CrossRefGoogle Scholar
  5. 5.
    T. NITTA, F. FUKUSHIMA and Y. MATSUO, Kodansha (1993) 387.Google Scholar
  6. 6.
    H. ARAI, S. EZAKI, Y. SHIMIZU, O. SHIPPO and T. SEIYAMA, in Proceedings of the International Meeting on Chemical Sensors, Kodansha, 1983, p. 393.Google Scholar
  7. 7.
    Y. SHIMIZU, M. SHIMABUKURO, H. ARAI and T. SEIYAMA, Chem. Lett. (1988) 917.Google Scholar
  8. 8.
    T. HASHEMI, H. M. AL-ALLAK, J. ILLINGSWORTH, A. W. BRINKMAN and J. WOODS, J. Mater. Sci. Lett. 9 (1990) 776.CrossRefGoogle Scholar
  9. 9.
    T. HASHEMI, J. ILLINGSWORTH, A. W. BRINKMAN, ibid. 8 (1990) 1176.Google Scholar
  10. 10.
    Idem., ibid. 11 (1992) 255.Google Scholar
  11. 11.
    Idem., ibid. 11 (1992) 666.Google Scholar
  12. 12.
    D. L. HALES, T. HASHEMI, A. W. BRINKMAN, in Proceedings of the 6th International Congress on Sensors, Nuremberg, Germany, Vol. 4 (1993) p. 43.Google Scholar
  13. 13.
    Y. YOKOMIZO, S. UNO, M. HARATA and H. HIRAKI, Sensors and Actuators 4 (1983) 599.CrossRefGoogle Scholar
  14. 14.
    WU MING-TANG, SUN HONG-TAO and LI PING, Sensors and Actuators B 17 (1994) 109.CrossRefGoogle Scholar
  15. 15.
    N. ICHINOSE, in “Advanced Ceramics”, edited by S. Saito (Oxford, New York, 1988) pp. 27–40.Google Scholar
  16. 16.
    M. BERTOLDI, B. FUBINI, E. GIAMELLO, G. BUSCA, F. TRIFIRO and A. VACCARI, J. Chem. Soc. Faraday Trans. I 84 (1988) 1405.CrossRefGoogle Scholar
  17. 17.
    Y. SHIMIZU, S. KUSANO, H. KUWAYAMA, K. TANAKA and M. EGASHIRA, J. Amer. Ceram. Soc. 73 (1990) 818.CrossRefGoogle Scholar
  18. 18.
    Y. C. YEH and T. Y. TSENG, J. Mater. Sci. 24 (1989) 2739.CrossRefGoogle Scholar
  19. 19.
    A. K. JONSCHER, “Dielectric Relaxation in Solids” (Chelsea Dielectric Press, London 1983).Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • M. Bayhan
    • 1
  • T. Hashemi
    • 2
  • A.W. Brinkman
  1. 1.Physics DepartmentMiddle East Technical UniversityAnkaraTurkey
  2. 2.Applied Physics Group, Physics DepartmentUniversity of DurhamDurhamUK

Personalised recommendations