Journal of Materials Science

, Volume 32, Issue 10, pp 2693–2697

Viscoelastic properties of bamboo

  • S AMADA
  • R. S LAKES
Article

Abstract

Dynamic viscoelastic properties of bamboo were determined in torsion and bending. Damping, measured by tan δ, in dry bamboo was relatively small, about 0.01 in bending and 0.02 to 0.03 in torsion, with little dependence on frequency in the audio range. In wet bamboo, damping was somewhat greater: 0.012–0.015 in bending and 0.03–0.04 in torsion. The anisotropy in damping implies a purely cellular model is insufficient; there is large-scale molecular orientation or at least two distinct solid phases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. THOMAS, in “Wood structure and composition”, edited by M. Lewin and I. S. Goldstein (Marcel Dekker, New York, 1991).Google Scholar
  2. 2.
    L. KNOPOFF, in “Physical Acoustics”, Vol. 3b, edited by E. P. Mason (Academic Press, New York, 1965) pp. 287–324.Google Scholar
  3. 3.
    C. A. WERT, M. WELLER and D. CAULFIELD, J. Appl. Phys. 56 (1984) 2453.CrossRefGoogle Scholar
  4. 4.
    S. AMADA, MRS Bull. 20 (1995) 35.Google Scholar
  5. 5.
    S. AMADA, T. MUNEKATA, Y. NAGASE, Y. ICHIWAKA, A. KIRIGAI and Y. ZHIFEI, J. Compos. Mater. 30 (1996) 800.Google Scholar
  6. 6.
    S. JAIN, R. KUMAR and U. C. JINDAL, J. Mater. Sci. 27 (1992) 4598.CrossRefGoogle Scholar
  7. 7.
    R. SUMMITT and A. SLIKER (eds.), “CRC Handbook of Materials Science”, Vol. IV, “Wood” (CRC Press, Boca Raton, FL, 1980).Google Scholar
  8. 8.
    C. SKAAR, “Water in Wood” (Syracuse University Press, Syracuse, NY, 1972).Google Scholar
  9. 9.
    C. P. CHEN and R. S. LAKES, J. Rheol. 33 (1989) 1231.CrossRefGoogle Scholar
  10. 10.
    M. BRODT and R. S. LAKES, Rev. Sci. Instrum. 66 (1995) 5292.CrossRefGoogle Scholar
  11. 11.
    Z. HASHIN, J. Appl. Mech. 50 (1983) 481.CrossRefGoogle Scholar
  12. 12.
    Idem, J. Appl. Mech. Trans. ASME 32E (1965) 630.Google Scholar
  13. 13.
    R. A. SCHAPERY, J. Compos. Mater. 1 (1967) 228.Google Scholar
  14. 14.
    R. M. CHRISTENSEN, “Mechanics of composite materials” (Wiley, New York, 1979).Google Scholar
  15. 15.
    Idem, J. Mech. Phys. Solids 17 (1969) 23.CrossRefGoogle Scholar
  16. 16.
    Z. HASHIN, AIAA J. 4 (1966) 1411.CrossRefGoogle Scholar
  17. 17.
    J. L. KATZ, J. Biomech. 4 (1971) 455.CrossRefGoogle Scholar
  18. 18.
    Idem, Nature 283 (1980) 106.CrossRefGoogle Scholar
  19. 19.
    R. S. LAKES and S. SAHA, Science 204 (1979) 501.CrossRefGoogle Scholar
  20. 20.
    K. PIEKARSKI, J. Appl. Phys. 41 (1970) 215.CrossRefGoogle Scholar
  21. 21.
    L. J. GIBSON and M. F. ASHBY, “Cellular solids” (Pergamon, Oxford, 1988).Google Scholar
  22. 22.
    R. S. LAKES Nature 361 (1993) 511.CrossRefGoogle Scholar
  23. 23.
    S. MAMADA and Y. KAWARUMA, Mokuzai Gakkaishi (J. Jpn Wood Res. Soc.) 19 (1973) 555.Google Scholar
  24. 24.
    J. JANSSEN, “Mechanical Properties of Bamboo” (Kluwer, Dordrecht, 1991).Google Scholar
  25. 25.
    J. B. STURGEON, in “Creep of Engineering Materials”, edited by C. D. Pomeroy (Mechanical Engineering Publications, London, 1978) p. 175.Google Scholar
  26. 26.
    M. E. TUTTLE and D. L. GRAESSER, Opt. Lasers Eng. 12 (1990) 151.CrossRefGoogle Scholar
  27. 27.
    J. E. GORDON, “Structures” (Penguin, Harmondsworth, UK, 1983) pp. 294 ff.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • S AMADA
    • 1
  • R. S LAKES
    • 2
  1. 1.Department of Mechanical Engineering, School of EngineeringGunma UniversityKiryu Gunma376 Japan
  2. 2.Department of Biomedical Engineering, Department of Mechanical Engineering, Center for Laser Science and EngineeringUniversity of IowaIowa CityUSA

Personalised recommendations