Journal of Materials Science

, Volume 32, Issue 24, pp 6415–6427 | Cite as

Drying shrinkage of cement paste as measured in an environmental scanning electron microscope and comparison with microstructural models

  • C. M. Neubauer
  • T. B. Bergstrom
  • K. Sujata
  • Y. Xi
  • E. J. Garboczi
  • H. M. Jennings


A recently developed image-intensity-matching technique has been used to analyse images of cement paste which were dried in an environmental scanning electron microscope. Shrinkage that occurs during changes in relative humidity is reported, together with some of the influences of water-to-cement ratio, temperature and age. Results from microstructurally based models are compared with experimental results. The best fit of models to experiment is achieved if calcium silicate hydrate (C–S–H) is divided into two types: high density C–S–H, which does not shrink, and low density C–S–H, which does shrink. Approximate values of unrestrained shrinkage of the low density C–S–H are attained as a function of relative humidity.


Shrinkage Calcium Hydroxide Environmental Scanning Electron Microscopy Calcium Silicate Hydrate Shrinkage Strain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. FELDMAN and P. J. SEREDA, Mater. Constrn. 1 (1968) 509.CrossRefGoogle Scholar
  2. 2.
    Idem., Engng J. 53 (1970) 53.Google Scholar
  3. 3.
    X. CONG, PhD Thesis, University of Illinois at Urbana-Champaign (1994).Google Scholar
  4. 4.
    H. F. W. TAYLOR, J. Amer. Ceram. Soc. 69 (1986) 464.CrossRefGoogle Scholar
  5. 5.
    Idem., “Cement chemistry” (Academic Press, London, 1990).Google Scholar
  6. 6.
    Z. P. BAZANT, in Proceedings of the Fourth RILEM International Symposium on Creep and Shrinkage of Concrete: Mathematical Modeling (Northwestern University, Evanston, IL, 1986) p. 41.Google Scholar
  7. 7.
    S. MINDESS and J. F. YOUNG, “Concrete” (Prentice-Hall, Englewood Cliffs, NJ, 1981).Google Scholar
  8. 8.
    Y. XI and H. M. JENNINGS, in “Materials science of concrete III”, edited by J. P. Skalny (American Ceramic Society, Westerville, OH, 1992) p. 37.Google Scholar
  9. 9.
    C. F. FERRARIS and F. H. WITTMANN, Cem. Concr. Res. 17 (1987) 453.CrossRefGoogle Scholar
  10. 10.
    W. HANSEN, J. Amer. Ceram. Soc. 70 (1987) 323.CrossRefGoogle Scholar
  11. 11.
    J. A. ALMUDAIHEEM, J. King Saud Univ., Engng Sci. 1 (1991) 69.Google Scholar
  12. 12.
    F. H. WITTMANN, in “Fundamental research on creep and shrinkage of concrete”, edited by F. H. Wittmann (Martinus Nijhoff, Boston, MA, 1982) p. 129.CrossRefGoogle Scholar
  13. 13.
    C. M. NEUBAUER, H. M. JENNINGS and E. J. GARBOCZI, Adv. Cem. Based Mater. 4 (1996) 6.CrossRefGoogle Scholar
  14. 14.
    H. M. JENNINGS and K. SUJATA, Mater. Res. Soc. Symp. Proc. 245 (1992) 243.CrossRefGoogle Scholar
  15. 15.
    Idem., J. Amer. Ceram. Soc. 75 (1992) 1669.CrossRefGoogle Scholar
  16. 16.
    Y. XI, T. B. BERGSTROM and H. M. JENNINGS, Comput. Mater. Sci. 2 (1994) 249.CrossRefGoogle Scholar
  17. 17.
    T. H. COURTNEY, “Mechanical behavior of materials” (McGraw-Hill, New York, 1990).Google Scholar
  18. 18.
    J. W. EISCHEN and S. TORQUATO, J. Appl. Phys. 74 (1993) 159.CrossRefGoogle Scholar
  19. 19.
    Z. P. BAZANT, in “Mathematical modeling of creep and shrinkage of concrete”, edited by Z. P. Bazant (Wiley, New York, 1988) p. 99.Google Scholar
  20. 20.
    D. P. BENTZ and E. J. GARBOCZI, Cem. Concr. Res. 21 (1991) 325.CrossRefGoogle Scholar
  21. 21.
    A. BENTUR, R. L. BERGER, J. H. KUNG, N. B. MILESTONE and J. F. YOUNG, J. Amer. Ceram. Soc. 62 (1979) 362.CrossRefGoogle Scholar
  22. 22.
    G. W. SCHERER, ibid. 69 (1986) 473.CrossRefGoogle Scholar
  23. 23.
    L. J. PARROTT, Cem. Concr. Res. 7 (1977) 597.CrossRefGoogle Scholar
  24. 24.
    A. BENTUR, J. H. KUNG, R. L. BERGER, J. F. YOUNG, N. B. MILESTONE, S. MINDESS and F. V. LAWRENCE, in Proceedings of the Seventh International Conference on the Chemistry of Cement III (Editions Septima, Paris, 1980) p. V126.Google Scholar
  25. 25.
    M. GEIKER, PhD Thesis, Technical University of Denmark, Copenhagen (1983).Google Scholar
  26. 26.
    D. P. BENTZ and E. J. GARBOCZI, US Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, Internal Report 4746 (1992).Google Scholar
  27. 27.
    H. M. JENNINGS and P. D. TENNIS, J. Amer. Ceram. Soc. 77 (1994) 3161.CrossRefGoogle Scholar
  28. 28.
    Idem., ibid. 78 (1995) 2575.Google Scholar
  29. 29.
    S. DIAMOND and D. BONEN, ibid. 76 (1993) 2993.CrossRefGoogle Scholar
  30. 30.
    R. T. COVERDALE, PhD Thesis, Northwestern University, Evanston, IL (1991).Google Scholar
  31. 31.
    E. J. GARBOCZI, “Finite element and finite difference codes for computing the linear elastic and elastic properties of digital images of random materials”, US Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, Internal Report, in press (1997).Google Scholar
  32. 32.
    R. HILL, J. Mech. Phys. Solids 12 (1964) 199.CrossRefGoogle Scholar
  33. 33.
    M. F. THORPE and I. JASIUK, Proc. R. Soc. A 438 (1992) 531.CrossRefGoogle Scholar
  34. 34.
    R. M. CHRISTENSEN, Mechanics of composite materials (John Wiley & Sons, New York, 1979).Google Scholar
  35. 35.
    B. W. ROSEN and Z. HASHIN, Int. J. Engng Sci. 8 (1970) 157.CrossRefGoogle Scholar
  36. 36.
    E. J. GARBOCZI and A. R. DAY, J. Mech. Phys. Solids 43 (1995) 1349.CrossRefGoogle Scholar
  37. 37.
    C. VERNET, Private communication to E.J.G.Google Scholar
  38. 38.
    P. J. M. MONTEIRO and C. T. CHANG, Cem. Concr. Res. 25 (1995) 1605.CrossRefGoogle Scholar
  39. 39.
    R. A. HELMUTH and D. H. TURK, Highway Res. Board, Spec. Rep. 90 (1966) 135.Google Scholar
  40. 40.
    J. G. BERRYMAN, J. Acoust. Soc. Amer. 68 (1980) 1809.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • C. M. Neubauer
    • 1
  • T. B. Bergstrom
    • 1
  • K. Sujata
    • 1
  • Y. Xi
    • 2
  • E. J. Garboczi
    • 3
  • H. M. Jennings
    • 1
  1. 1.Departments of Materials Science and Engineering and Civil EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of Civil EngineeringDrexel UniversityPhiladelphiaUSA
  3. 3.National Institute of Standards and TechnologyGaithersburg

Personalised recommendations