Advertisement

Journal of Materials Science

, Volume 32, Issue 21, pp 5593–5602 | Cite as

Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450°C: Part I 0.00 wt% Al-Zn baths

  • C. E JORDAN
  • A. R MARDER
Article

Abstract

Interstitial-free alloy steels containing various combinations of solute additions of titanium, titanium + niobium and phosphorus, were hot-dipped in a pure zinc (0.00 wt% Al) at 450°C in order to study the morphology and kinetics of Fe-Zn phase formation. Uniform attack of the substrate occurred on all of the steels leading to the formation of a three-phase alloy layer morphology containing gamma, delta and zeta Fe-Zn phases. Titanium and titanium + niobium solute additions had no effect on the growth kinetics of any of the Fe-Zn phases. Phosphorus additions were found to retard only the kinetics of gamma-phase growth, without influencing the growth kinetics of the other Fe-Zn phases. In fact, the gamma-phase layer in the phosphorus-containing substrates was no longer discernable in light optical microscopy after 120 s immersion. The growth kinetics of the total Fe-Zn alloy layer (gamma + delta + zeta) was dominated by the growth of the zeta-phase layer which was in contact with liquid zinc during immersion in the zinc bath. The zeta-phase layer followed a two-stage growth process governed by t1/3 kinetics. The delta-phase layer also exhibited two-stage growth with parabolic t1/2 kinetics. The gamma phase followed t1/4 growth kinetics, indicative of grain-boundary diffusion-controlled growth.

Keywords

Alloy Layer Liquid Zinc Gamma Phase Zinc Bath Delta Layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. MARDER, in "International Symposium on IF Steel Sheet Processing", 30th Annual Conference of Metallurgists, Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, edited by C.E. Cullins and D.L. Barager, Ottawa, Canada (1991) p. 157.Google Scholar
  2. 2.
    Y. HISAMATSU, in "GALVATECH '89" edited by Y. Hasimatsu (ISIJ, Tokyo 1989) p. 3.Google Scholar
  3. 3.
    A. NISHIMOTO, J. INAGAKI and K. NAKAOKA, Trans. ISIJ 29 (1989) 3.Google Scholar
  4. 4.
    C. E. JORDAN and A. R. MARDER, in "GALVATECH '95", edited by J.E. Hartmann (Iron and Steel Society, Warrendale, PA, 1995) p. 319.Google Scholar
  5. 5.
    T. TOKI, K. OSHIMA, T. NAKAMORI, Y. SAITO, T. TSUDA and Y. HOBO, in "The Physical Metallurgy of Zinc Coated Steel" edited by A. R. Marder (TMS, Warrendale, 1994) p. 169.Google Scholar
  6. 6.
    C. E. JORDAN and A. R. MARDER, ibid. p. 197.Google Scholar
  7. 7.
    C. COFFIN and S. W. THOMPSON, in "GALVATECH '95", edited by J.E. Hartmann (Iron and Steel Society, Warrendale, PA, 1995) p. 121.Google Scholar
  8. 8.
    C. E. JORDAN and A. R. MARDER, J. Mater. Sci. 32 (1997) 56035610.CrossRefGoogle Scholar
  9. 9.
    C. E. JORDAN, K. M. GOGGINS, A. O. BENSCOTER and A. R. MARDER, Mater. Charact. 31 (1993) 107.CrossRefGoogle Scholar
  10. 10.
    P. PERROT, J.-C. TISSIER and J.-Y. DAUPHIN, Z. Metalkde 83 (1992) 11.Google Scholar
  11. 11.
    G. F. BASTIN, F. J. J. VAN LOO and G. D. RIECK, ibid. 65 (1974) 656.Google Scholar
  12. 12.
    M. GUTTMANN, Mater. Sci. Forum 155 156 (1994) 527.CrossRefGoogle Scholar
  13. 13.
    D. HORSTMANN, "Reactions Between Iron and Molten Zinc" (Zinc Development Association, London, 1978)Google Scholar
  14. 14.
    M. ONISHI, Y. WAKAMATSU and H. MIURA, Trans. JIM 15 (1974) 331.CrossRefGoogle Scholar
  15. 15.
    F. J. J. VAN LOO and G. D. RIECK, Acta Metall. 21 (1973) 61.CrossRefGoogle Scholar
  16. 16.
    H. K. KIM and K. N. TU, Phys. Met. Rev. B., 53 (1996) 16027.CrossRefGoogle Scholar
  17. 17.
    H. H. FARRELL and G. H. GILMER, J. Appl. Phys. 45 (1974) 4025.CrossRefGoogle Scholar
  18. 18.
    L. ALLEGRA, R. G. HART and H. E. TOWNSEND, Metall. Trans. 14A (1983) 401.CrossRefGoogle Scholar
  19. 19.
    F. J. J. VAN LOO, Prog. Solid State Chem. 21 (1990) 47.CrossRefGoogle Scholar
  20. 20.
    C. S. LIN, W. A. CHIOU and M. MESHII, in "The Physical Metallurgy of Zinc Coated Steel", edited by A. R. Marder (TMS, Warrendale, PA, 1994) p. 31.Google Scholar
  21. 21.
    L. ESPERANCE, J. D. L’ECUYER, A. SINARD, M. P. BARRETO and G. BOLTON, in "GALVATECH '92" edited by Centre de Recherches Metallurgiques (Verlag Stahl Eisen, Dusseldorf, 1992) p. 442.Google Scholar
  22. 22.
    Y. ADACHI, T. NAKAMORI and K. KAMEI, GALVATECH ’95 edited by J. E. Hartmann (Iron and Steel Society, Warrendale, PA, 1995) p. 471.Google Scholar
  23. 23.
    J. MACOWIAK and N. R. SHORT, Int. Metals Rev. 1 (1979) 1.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • C. E JORDAN
    • 1
  • A. R MARDER
    • 1
  1. 1.Department of Materials Science and EngineeringLehigh UniversityBethlehemUSA

Personalised recommendations