Journal of Muscle Research & Cell Motility

, Volume 18, Issue 6, pp 631–641 | Cite as

Desmin-lacZ transgene expression and regeneration within skeletal muscle transplants

  • L. Lescaudron
  • S. E. Creuzet
  • Z. Li
  • D. Paulin
  • J. Fontaine-Perus
Article

Abstract

The purpose of this study was to investigate the initiation and time course of the regeneration process in fragments of skeletal muscle transplants as a function of muscle tissue age at implantation. The appearance of desmin occurs at the very beginning of myogenesis. The transgenic desminnls lacZ mice used in the study bear a transgene in which the 1 kb DNA 5′ regulatory sequence of the desmin gene is linked to a reporter gene coding for Escherichia coliβ-galactosidase. The desmin lacZ transgene labels muscle cells in which the desmin synthesis programme has commenced. We implanted pectoralis muscle fragments from fetal transgenic embryos and mature and old transgenic mice into mature non-transgenic mice. Early events of myogenesis occurring during regeneration started sooner in transplants from 4-month-old (day 3 post-implantation) muscle than in those from 24-month-old (day 5-6 post-implantation) muscle, and they lasted longer in those from young (day 17 post-implantation) than in those from old (day 14 post-implantation) muscle fragments. In adult muscle, transgene activation proceeded from the periphery toward the centre of the transplant. In transplants from fetal 18-day-old pectoralis, myotubes with transgene activity were observed from day 1 to day 19. Desmin immunoreactivity, which appeared about one day after transgene activation, was followed by myosin expression. In adult transplants, the continuity of laminin labelling was disrupted around degenerative fibres, illustrating alteration of the extracellular matrix. Our data suggest that satellite cells from old muscle tissue have lower proliferative capacity and/or less access to trophic substances released by the host (damaged fibres, vascularization) than those from fetal or young adult muscle

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALLEN, R. E. & RANKIN, L. L. (1990) Regulation of satellite cells during skeletal muscle growth and development. Proc. Soc. Exp. Biol. Med. 194, 81-6.PubMedGoogle Scholar
  2. ASKANAS, V., BORNEMANN, A. & ENGEL, W. K. (1990) Immunocytochemical localization of desmin at human neuromuscular junction. Neurology 40, 949-53.PubMedGoogle Scholar
  3. BASSAGLIA, Y. & GAUTRON, J. (1995) Fast and slow rat muscles degenerate and regenerate differently after whole crush injury. J. Muscle Res. Cell Motil. 16, 420-9.PubMedCrossRefGoogle Scholar
  4. BISCHOFF, R. (1986) A satellite cell mitogen from crushed adult muscle. Dev. Biol. 115, 140-7.PubMedCrossRefGoogle Scholar
  5. BISCHOFF, R. (1990) Cell cycle commitment of rat muscle satellite cells. J. Cell Biol. 11, 201-7.CrossRefGoogle Scholar
  6. BORNEMANN, A. & SCHALBRUCH, H. (1992) Desmin and vimentin in regenerating muscle. Muscle Nerve 15, 14-20.PubMedCrossRefGoogle Scholar
  7. COSSU, G., RINALDI, G., SENNI, M. J., MOLVIARO, M. & VIVARELLI, E. (1988) Early mammalian myoblasts are resistant to phorbol ester induced block of differentiation. Development 102, 65-9.PubMedGoogle Scholar
  8. DARR, K. C. & SCHULTZ, E. (1987) Exercise induced satellite cell activation in growing and mature skeletal muscle. J. Appl. Physiol. 63, 1816-21.PubMedGoogle Scholar
  9. FOSTER, R. F., THOMPSON, J. M. & KAUFMAN, S. J. (1987) A laminin substrate promotes myogenesis in rat skeletal muscle culture: analysis of replication and development using anti-desmin and anti-BrdUrd monoclonal antibodies. Dev. Biol. 122, 11-20.PubMedCrossRefGoogle Scholar
  10. GROUNDS, M. D. & McGEACHIE, J. K. (1989) A comparison of muscle precursor replication in crush-injured skeletal muscle of Swiss and BALBc mice. Cell Tissue Res. 255, 385-91.PubMedCrossRefGoogle Scholar
  11. GULATI, A. K. (1985) Basement membrane component changes in skeletal muscle transplants undergoing regeneration or rejection. J. Cell Biochem. 27, 337-46.PubMedCrossRefGoogle Scholar
  12. HOLTZER, H., DILLULO, C., COSTA, M., LU, M., CHOI, J., MERMELSTEIN, C., SCHULTHEISS, T. & HOLTZER, S. (1991) Striated myoblasts and multinucleated myotubes induced in non-muscle cells by MyoD are similar to normal in vivo and in vitro counterparts. In Frontiers in Muscle Research (edited by OZAWA, E., MASAKI, T. & NABESHIMA, Y.) pp. 187-207. New York: Elsevier Science.Google Scholar
  13. HUGHES, S. M. & BLAU, H. M. (1990) Migration of myoblasts across basal lamina during skeletal muscle development. Nature 345, 350-3.PubMedCrossRefGoogle Scholar
  14. KAUFMAN, S. J. & FOSTER, R. F. (1988) Replicating myoblasts express a muscle-specific phenotype. Proc. Natl Acad. Sci. USA 90, 9606-10.CrossRefGoogle Scholar
  15. LABRECQUE, C., HUARD, J., DANSEREAU, G. & TREMBLAY, J. P. (1991) In vitro bromodeoxyuridine labeling of nuclei: application to myotube hybridization. J. Histochem. Cytochem. 39, 1421-6.PubMedGoogle Scholar
  16. LAZARIDES, E. (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283, 249-56.PubMedCrossRefGoogle Scholar
  17. LEFAUCHEUR, J. P. & SEBILLE, A. (1995) The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromusc. Disorders 5, 501-9.PubMedCrossRefGoogle Scholar
  18. LESCAUDRON, L., LI, Z., PAULIN, D. & FONTAINE-PERUS, J. (1993) Desmin-lacZ transgene, a marker of regenerating skeletal muscle. Neuromusc. Disorders 3, 419-22.PubMedCrossRefGoogle Scholar
  19. LI, H., CHOUDHARY, S. K., MILNER, D. J., MUNIR, M. L., KUISK, I. R. & CAPETANAKI, Y. (1994) Inhibition of desmin expression blocks myoblast fusion and interferes with myogenic regulators myoD and myogenin. J. Cell Biol. 124, 827-41.PubMedCrossRefGoogle Scholar
  20. LI, Z., MARCHAND, P., HUMBERT, J., BABINET, C. & PAULIN, D. (1993) Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice. Development 117, 947-59.PubMedGoogle Scholar
  21. McGEACHIE, J. K. & GROUNDS, M. D. (1989) The onset of myogenesis in denervated mouse skeletal muscle regenerating after injury. Neuroscience 28, 509-14.PubMedCrossRefGoogle Scholar
  22. McGEACHIE, J. K. & GROUNDS, M. D. (1995) Retarded myogenic cell replication in regenerating skeletal muscles of old mice: an autoradiographic study in young and old BALBc and SJL/J mice. Cell Tissue Res. 280, 277-82.PubMedGoogle Scholar
  23. MOENS, P., PARTRIDGE, T. A., MORGAN, J. E., BECKERSBLEUKX, G. & MARECHAL, G. (1993) Regeneration after free muscle grafting in normal and dystrophic (mdx) mice. J. Neurol. Sci. 111, 209-13.CrossRefGoogle Scholar
  24. ÖCALAN, M., GOODMAN, S. L., KÜHL, U., HAUSCHKA, S. D. & VONDERMARK, K. (1988) Laminin alters cell shape and stimulates motility and proliferation of murine skeletal myoblasts. Dev. Biol. 125, 158-67.PubMedCrossRefGoogle Scholar
  25. ROBERTS, P. & McGEACHIE, J. K. (1990) Endothelial cell activation during angiogenesis in freely transplanted skeletal muscles in mice and its relationship to the onset of myogenesis. J. Anat. 169, 197-207.PubMedGoogle Scholar
  26. ROBERTS, P., McGEACHIE, J. K., GROUNDS, M. D. & SMITH, E. R. (1989) Initiation and duration of myogenic precursor cell replication in transplants of intact skeletal muscles: an autoradiographic study in mice. Anat. Rec. 224, 1-6.PubMedCrossRefGoogle Scholar
  27. SANES, J. R., RUBINSTEIN, J. L. & NICOLAS, J. F. (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5, 3133-42.PubMedGoogle Scholar
  28. SATOH, A., LABRECQUE, C. & TREMBLAY, J. P. (1993) Utilization of fluorescent latex microspheres (FLMs) to follow the fate of transplanted myoblasts. J. Histochem. Cytochem. 41, 1579-82.PubMedGoogle Scholar
  29. SCHULTZ, E. & JARYSZACK, D. L. (1985) Effects of skeletal muscle regeneration on proliferative potential of satellite cells. Mech. Ageing Dev. 30, 63-72.PubMedCrossRefGoogle Scholar
  30. SCHULTZ, E. & LIPTON, B. H. (1982) Skeletal muscle satellite cells: Change in proliferation potential as a function of age. Mech. Ageing Dev. 20, 377-83.PubMedCrossRefGoogle Scholar
  31. THORNELL, L. E., EDSTRÖM, L. & ERIKSSON, A. (1980) The distribution of intermediate filament protein (skeletin) in normal and diseased human muscle. J. Neurol. Sci. 17, 153-70.CrossRefGoogle Scholar
  32. TOKUYASU, K. T., DUTTON, A. H. & SINGER, S. J. (1983) Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organisation in chicken skeletal muscle. J. Cell Biol. 96, 1727-42.PubMedCrossRefGoogle Scholar
  33. ULLMAN, M., ULLMAN, A., SOMMERLAND, H., SKOTTNER, A. & OLDFORS, A. (1990) Effects of growth hormone on muscle regeneration and IGF-1 concentration in old rats. Acta Physiol. Scand. 140, 521-5.PubMedCrossRefGoogle Scholar
  34. VANDENBURGH, H. H., SHEFF, M. F. & ZACKS, S. I. (1985) Soluble age-related factors from skeletal muscle which influence muscle development. Exp. Cell Res. 153, 389-401.CrossRefGoogle Scholar
  35. VATER, R., CULLEN, M. J. & HARRIS, J. B. (1992) The fate of desmin and titin during the degeneration and regeneration of the soleus muscle of the rat. Acta Neuropathol. 84, 278-88.PubMedCrossRefGoogle Scholar
  36. WEITZER, G., MILNER, D., KIM, J. U., BRADLEY, R. & CAPETANAKI, Y. (1995) Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathways during embryonic stem cell differentiation. Dev. Biol. 172, 422-39.PubMedCrossRefGoogle Scholar
  37. ZHANG, M. & McLENNAN, I. (1994) Use of antibodies to identify satellite cells with a light microscope. Muscle Nerve 17, 987-94.PubMedCrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • L. Lescaudron
    • 1
  • S. E. Creuzet
    • 1
  • Z. Li
    • 2
  • D. Paulin
    • 2
  • J. Fontaine-Perus
    • 1
  1. 1.CNRS ERS 6107, Faculte des Sciences et des TechniquesUniversite de NantesNantes CedexFrance
  2. 2.Biologie Moleculaire de la DifferenciationInstitut Pasteur, SCMEParis CedexFrance

Personalised recommendations