Advertisement

Journal of Materials Science

, Volume 32, Issue 21, pp 5577–5581 | Cite as

Electrical resistance as a tool in determining the failure of fibres in a nicalon-reinforced LAS glass-ceramic with Ta2O5 additions

  • G. R VILLALOBOS
  • R. F SPEYER
Article

Abstract

The electrical resistance of a Nicalon-reinforced lithium aluminosilicate glass-ceramic with Ta2O5 additions was used as an indicator of fibre and TaC/Carbon coating fracture during flexural testing. The resistivities of fibres in the composite were significantly lower than the free fibres owing to the high conductivity carbon and TaC coatings which formed during hot pressing. Hot-pressing times beyond 0.5 h resulted in a degradation of flexural strength via the formation of a strongly bonded TaC layer at the expense of the carbon debond layer.

Keywords

Ultimate Strength Ceramic Matrix Composite Interfacial Shear Strength Compressive Failure Lithium Aluminosilicate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. PRABHAKARAN, Exp. Techniques 2, (1990) 16.CrossRefGoogle Scholar
  2. 2.
    N. MUTO and H. YANAGIDA, J. Am. Ceram. Soc. 76 (1993) 1875.CrossRefGoogle Scholar
  3. 3.
    K. K. CHAWLA, “Ceramic Matrix Composites” (Springer, New York, 1987).Google Scholar
  4. 4.
    A. G. EVANS and D. B. MARSHALL, Acta Metall. 37 (1989) 2567.CrossRefGoogle Scholar
  5. 5.
    M. D. THOULESS, O. SBAIZERO, L. S. SIGL and A. G. EVANS, J. Am. Ceram. Soc. 72 (1989) 525.CrossRefGoogle Scholar
  6. 6.
    E. BISCHOFF, M. RUHLE, O. SBAIZERO and A. G. EVANS, ibid. 72 (1989) 741.CrossRefGoogle Scholar
  7. 7.
    K. M. PREWO, J. J. BRENNAN and G. K. LAYDEN, Ceram. Bull. 65 (1986) 305.Google Scholar
  8. 8.
    Dow Corning product data sheet, “Information About Nicalon Ceramic Fiber”, Dow Corning Corporation, Midland, MI (1989).Google Scholar
  9. 9.
    R. F. COOPER and K. CHUNG, J. Mater. Sci. 22 (1987) 3148.CrossRefGoogle Scholar
  10. 10.
    L. A. BONNEY and R. F. COOPER, J. Am. Ceram. Soc. 72 (1990) 2116.Google Scholar
  11. 11.
    P. M. BENSON, K. E. SPEAR and C. G. PANTANO, Ceram. Eng. Sci. Proc. 9 (1988) 663.CrossRefGoogle Scholar
  12. 12.
    J. HOMENY, J. R. VAN VALZA and M. A. KELLY, J. Am. Ceram. Soc. 73 (1990) 2054.CrossRefGoogle Scholar
  13. 13.
    H. H. SHIN, R. KIRCHAIN and R. F. SPEYER, J. Mater. Res. 10(3) (1995) 602608.CrossRefGoogle Scholar
  14. 14.
    G. R. VILLALOBOS and R. F. SPEYER, “Proceedings of Symposium on Ceramic Matrix Composites”, J. Am. Ceram. Soc. 74 Waterville, Ohio (1996).Google Scholar
  15. 15.
    D. B. MARSHALL, J. Am. Ceram. Soc. 47 (1984) C–259.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • G. R VILLALOBOS
    • 1
  • R. F SPEYER
    • 1
  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations