Journal of Muscle Research & Cell Motility

, Volume 18, Issue 1, pp 17–30 | Cite as

Actin filament mechanics in the laser trap

  • D. E. DUPUIS
  • J. WU


Numerous biological processes, including muscular contraction, depend upon the mechanical properties of actin filaments. One such property is resistance to bending (flexural rigidity, EI). To estimate EI, we attached the ends of fluorescently labelled actin filaments to two microsphere‘handles’ captured in independent laser traps. The positions of the traps were manipulated to apply a range of tensions (0--8 pN)to the filaments via the microsphere handles. With increasing filament tension, the displacement of the microspheres was inconsistent with a microsphere-filament system that is rigid. We maintain that this inconsistency is due to the microspheres rotating in the trap and the filaments bending near their attachments to accommodate this rotation. Fitting the experimental data to a simple model of this phenomena, we estimate actin's EI to be ×15 × 103 pN nm2, a value within the range of previously reported results, albeit using a novel method. These results both: support the idea that actin filaments are more compliant than historically assumed; and, indicate that without appropriately pretensioning the actin filament in similar laser traps, measurements of unitary molecular events (e.g. myosin displacement) may be significantly underestimated


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASHKIN, A. (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–82.Google Scholar
  2. BLOCK, S. M. (1995) One small step for myosin. Nature 378, 132–3.PubMedCrossRefGoogle Scholar
  3. BREMER, A. & AEBI, U. (1992) The structure of the f-actin filament and the actin molecule. Curr. Opin. Cell Biol. 4, 20–6.PubMedCrossRefGoogle Scholar
  4. CHU, S. (1991) Laser manipulation of atoms and particles. Science 253, 861–6.PubMedGoogle Scholar
  5. EGELMAN, E. H. (1985) The structure of f-actin. J. Muscle Res. Cell Motil. 6, 129–51.PubMedCrossRefGoogle Scholar
  6. FEYNMAN, R. P., LEIGHTON, R. B. & SANDS, M. L. (1964) The Feynman Lectures on Physics, Vol. 2.Reading: Addison-Wesley.Google Scholar
  7. FINER, J. T., SIMMONS, R. M. & SPUDICH, J. A. (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–19.PubMedCrossRefGoogle Scholar
  8. FINER, J. T., MEHTA, A. D. & SPUDICH, J. A. (1995) Characterization of single actin-myosin interactions. Biophys. J. 68, 291s–7s.PubMedGoogle Scholar
  9. FORD, L. E., HUXLEY, A. F. & SIMMONS, R. M. (1981) The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. 311, 219–49.PubMedGoogle Scholar
  10. FRISCH-FAY, R. (1962) Flexible Bars. Washington: Butterworths.Google Scholar
  11. GITTES, F., MICKEY, B., NETTLETON, J. & HOWARD, J. (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4), 923–34.PubMedCrossRefGoogle Scholar
  12. GOLDMAN, Y. E. & HUXLEY, A. F. (1994) Actin compliance: are you pulling my chain? Biophys. J. 67, 2131–6.PubMedGoogle Scholar
  13. HARRIS, R. A. & HEARST, J. E. (1965) On polymer dynamics. J. Chem. Phys. 44(7), 2595–602.CrossRefGoogle Scholar
  14. HIGUCHI, H., YANAGIDA, T. & GOLDMAN, Y. E. (1995) Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophys. J. 69, 1000–10.PubMedGoogle Scholar
  15. HUXLEY, H. E., STEWART, A., SOSA, H. & IRVING, T. (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys. J. 67, 2411–21.PubMedGoogle Scholar
  16. ISAMBERT, H., VENIER, P., MAGGS, A. C., FATTOUM, A., KASSAB, R., PANTALONI, D. & CARLIER, M. (1995) Flexibility of actin filaments derived from thermal fluctuations. J. Biol. Chem. 270, 11437–44.PubMedCrossRefGoogle Scholar
  17. KABSCH, W. & VANDEKERCKHOVE, J. (1992) Structure and function of actin. Annu. Rev. Biophys. Biomol. Struct. 21, 49–76.PubMedCrossRefGoogle Scholar
  18. KAS, J., STREY, H., BARMANN, M. & SACKMANN, E. (1993) Direct measurement of the wave-vector-dependent bending stiffness of freely flickering actin filaments. Europhys. Lett. 21(8), 865–70.Google Scholar
  19. KISHINO, A. & YANAGIDA, T. (1988) Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–7.PubMedCrossRefGoogle Scholar
  20. KOJIMA, H., ISHIJIMA, A. & YANAGIDA, T. (1994) Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitronanomanipulation. Proc. Natl Acad. Sci. USA 91, 12962–6.PubMedCrossRefGoogle Scholar
  21. LANDAU, L. D. & LIFSHITZ, E. M. (1958) Statistical Physics. London: Pergamon Press Ltd.Google Scholar
  22. MARGOSSIAN, S. S. & LOWEY, S. (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. In Methods Enzymol, Vol. 85. Structural and Contractile Proteins. (edited by FREDERIKSEN, D. W. & CUNNINGHAM, L. W.) New York: Academic Press.Google Scholar
  23. MIYATA, H., HAKOZAKI, H., YOSHIKAWA, H., SUZUKI, N., KINOSITA, K., NISHIZAKA, T. & ISHIWATA, S. (1994) Stepwise motion of an actin filament over a small number of heavy meromyosin molecules is revealed in an in vitro motility assay. J. Biochem. 115, 644–7.PubMedGoogle Scholar
  24. MOLLOY, J. E., BURNS, J. E., KENDRICK-JONES, J., TREGEAR, R. T. & WHITE, D. C. S. (1995) Movement and Force produced by a single myosin head. Nature 378, 209–12.PubMedCrossRefGoogle Scholar
  25. NAGASHIMA, H. & ASAKURA, S. (1980) Dark-field light microscopic study of the flexibility of f-actin complexes. J. Mol. Biol. 136, 169–82.PubMedCrossRefGoogle Scholar
  26. NISHIZAKA, T., MIYATA, H., YOSHIKAWA, H., ISHIWATA, S. & KINOSITA, K. (1995) Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377, 251–4.PubMedCrossRefGoogle Scholar
  27. OOSAWA, F. (1977) Actin-actin bond strength and the conformational change of f-actin. Biorheology 14, 11–19.PubMedGoogle Scholar
  28. PARDEE, J. D. & SPUDICH, J. A. (1982) Purification of muscle actin. In Methods Enzymol, Vol. 85. Structural and Contractile Proteins. (edited by FREDERIKSEN, D. W. & CUNNINGHAM, L. W.) New York: Academic Press.Google Scholar
  29. SVOBODA, K. & BLOCK, S. M. (1994) Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–85.PubMedCrossRefGoogle Scholar
  30. SVOBODA, K., SCHMIDT, C. F., SCHNAPP, B. J. & BLOCK, S. M. (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–7.PubMedCrossRefGoogle Scholar
  31. VANBUREN, P., WORK, S. S. & WARSHAW, D. M. (1994) Enhanced force generation by smooth muscle myosin in vitro. Proc. Natl Acad. Sci. USA 91, 202–5.PubMedCrossRefGoogle Scholar
  32. VANBUREN, P. GUILFORD, W. H., KENNEDY, G., WU, J. & WARSHAW, D. M. (1995) Smooth muscle myosin: a high force-generating molecular motor. Biophys. J. 68, 256s–9s.PubMedGoogle Scholar
  33. WAKABAYASHI, K., SUGIMOTO, Y., TANAKA, H., UENO, Y., TAKEZAWA, Y. & AMEMIYA, Y. (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67, 2422–35.PubMedCrossRefGoogle Scholar
  34. WARSHAW, D. M., DEROSIERS, J. M., WORK, S. S. & TRYBUS, K. M. (1990) Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J. Cell Biol. 111, 453–63.PubMedCrossRefGoogle Scholar
  35. YANAGIDA, T., NAKASE, M., NISHIYAMA, K. & OOSAWA, F. (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307, 58–60.PubMedCrossRefGoogle Scholar
  36. YIN, H., WANG, M. D., SVOBODA, K., LANDICK, R., BLOCK, S. M. & GELLES, J. (1995) Transcription against an applied force. Science 270, 1653–7.PubMedGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • D. E. DUPUIS
    • 1
    • 2
    • 1
  • J. WU
    • 3
    • 1
  1. 1.Department of Molecular Physiology and BiophysicsUniversity of VermontBurlingtonUSA
  2. 2.Department of Biomedical EngineeringUniversity of VermontBurlingtonUSA
  3. 3.Department of PhysicsUniversity of VermontBurlingtonUSA

Personalised recommendations