Journal of Materials Science

, Volume 32, Issue 11, pp 2855–2871 | Cite as

The lateral deformation of cross-linkable PPXTA fibres

  • M. C. G Jones
  • E Lara-Curzio
  • A Kopper
  • D. C Martin


The lateral deformation properties of oriented polymer fibres were examined by transverse compressive and torsional experiments. A modified interfacial test system machine was used to study the transverse compressive deformation behaviour of thermally cross-linkable poly(p-1,2-dihydrocyclobutaphenylene terephthalamide) (PPXTA) fibres and of a number of commercially available polymers (Nomex, nylon, Kevlar, Dacron) and ceramic (Nicalon and FP) fibres. The torsional (shear) modulus G of PPXTA and Kevlar poly(p-phenylene terephthalamide) (PPTA) fibres was measured by pendulum experiments. During both fibre torsion and transverse compression, the deformation involves materials slip on (h k 0) planes, in the [0 0 1] direction for the torsion and the [h k 0] directions for transverse compression. The intermolecular crosslinks in PPXTA did not significantly modify the elastic transverse modulus Et and caused only slight (13%) increase in shear modulus G. However, the plastic transverse properties of cross-linked PPXTA were significantly different than those of uncross-linked PPXTA. The stress at the proportional limit σp, determined from the transverse load–displacement curves, was substantially higher for the cross-linked fibres than for the uncross-linked fibres. In addition, the cross-linked PPXTA fibres exhibited a large strain recoverable response reminiscent of elastomers, whereas the PPTA and uncross-linked PPXTA fibres exhibited a large strain irreversible response.


Shear Strength Proportional Limit Kink Band Apparent Stress Lateral Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. H. YANG, “Aromatic high-strength fibres” (Wiley-Interscience, New York, 1989).Google Scholar
  2. 2.
    S. R. ALLEN, J. Mater. Sci. 22 (1987) 853.CrossRefGoogle Scholar
  3. 3.
    S. J. DETERESA, S. R. ALLEN and R. J. FARRIS, in “Composite applications: the role of matrix, fiber, and interface” edited by T. Vigo and B. Kinzig (VCH Publishers, New York, NY, 1992) Chapter 4.Google Scholar
  4. 4.
    C. Y.-C. LEE and U. SANTHOSH, Polym. Engng Sci. 33 (1993) 907.CrossRefGoogle Scholar
  5. 5.
    D. L. VEZIE, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA (1993).Google Scholar
  6. 6.
    D. C. MARTIN, Ph.D. Dissertation, The University of Massachusetts, Amherst, MA (1990).Google Scholar
  7. 7.
    D. C. MARTIN and E. L. THOMAS, J. Mater. Sci. 26 (1991) 5171.CrossRefGoogle Scholar
  8. 8.
    V. I. VLADIMIROV, A. G. ZEMBIL'GOTOV and N. A. PERTSEV, Fiz. Tverd. Tela (Leningrad) 31 (1989) 233.Google Scholar
  9. 9.
    M-C. G. JONES and D. C. MARTIN, Macromolecules 28 (1995) 6161.CrossRefGoogle Scholar
  10. 10.
    S. R. ALLEN and E. L. ROCHE, Polymer 30 (1989) 996.CrossRefGoogle Scholar
  11. 11.
    M. G. NORTHOLT and R. V. D. HOUT, ibid. 26 (1985) 310.CrossRefGoogle Scholar
  12. 12.
    W. F. KNOFF, J. Mater. Sci. Lett. 6 (1987) 1392.CrossRefGoogle Scholar
  13. 13.
    S. R. ALLEN, Ph.D. Dissertation, University of Massachusetts, Amherst, MA, (1983).Google Scholar
  14. 14.
    P. MASON, Textile Res. J 34 (1964) 1104.Google Scholar
  15. 15.
    S. L. PHOENIX and J. SKELTON, ibid. 44 (1974) 934.Google Scholar
  16. 16.
    D. W. HADLEY, I. M. WARD and J. WARD, Proc. Roy. Soc. A 1401 (1965) 275.Google Scholar
  17. 17.
    S. K. BATRA and N. SYED, J. Polym. Sci. Polym. Phys. 13 (1975) 369.CrossRefGoogle Scholar
  18. 18.
    S. A. JAWAD and I. M. WARD, J. Mater. Sci. 13 (1978) 1381.CrossRefGoogle Scholar
  19. 19.
    S. KAWABATA, J. Textile Inst. 81 (1990) 432.CrossRefGoogle Scholar
  20. 20.
    W. F. KNOFF, in “Basic properties of fibers and fiber assemblies, performance and design of new fibrous materials,” Proceedings of the 21st Textile Research Symposium, Mt. Fuji Educational Training Center, Susono City, Shizuoka, Japan, 79th August (1992).Google Scholar
  21. 21.
    T. KOTANI, J. SWEENEY and I. M. WARD, J. Mater. Sci. 29 (1994) 5551.CrossRefGoogle Scholar
  22. 22.
    S. J. DETERESA, S. R. ALLEN, R. J. FARRIS and R. S. PORTER, ibid. 19 (1984) 57.CrossRefGoogle Scholar
  23. 23.
    S. R. ALLEN, Polymer 29 (1988) 1091.CrossRefGoogle Scholar
  24. 24.
    S. J. DETERESA, R. S. PORTER and R. J. FARRIS, J. Mater. Sci. 23 (1998) 1886.CrossRefGoogle Scholar
  25. 25.
    V. R. MEHTA and S. KUMAR, ibid. 29 (1994) 3658.CrossRefGoogle Scholar
  26. 26.
    L. J. MARKOSKI, K. A. WALKER, G. A. DEETER, G. E. SPILMAN, D. C. MARTIN and J. S. MOORE, Chem. Mater. 5 (1993) 248.CrossRefGoogle Scholar
  27. 27.
    G. E. SPILMAN, L. J. MARKOSKI, K. A. WALKER, G. A. DEETER, D. C. MARTIN and J. S. MOORE, Polym. Mater. Sci. Engng 68 (1993) 139.Google Scholar
  28. 28.
    M-C. G. JONES, T. JIANG and D. C. MARTIN, Macromolecules 27 (1994) 6507.CrossRefGoogle Scholar
  29. 29.
    T. JIANG, J. RIGNEY, M-C. G. JONES, L. J. MARKOSKI, G. E. SPILMAN, D. F. MIELEWSKI and D. C. MARTIN, ibid. 28 (1995) 3301.CrossRefGoogle Scholar
  30. 30.
    W. WANG, W. RULAND and Y. COHEN, Acta Polymer 44 (1993) 273.CrossRefGoogle Scholar
  31. 31.
    Y. COHEN, H. H. FROST and E. L. THOMAS, in “Reversible polymeric gels and related systems”, edited by P. S. Russo (American Chemical Society Symposium Series, Washington DC, 1987) Chapter 12.Google Scholar
  32. 32.
    M. G. NORTHOLT, Eur. Polym. J. 10 (1974) 799.CrossRefGoogle Scholar
  33. 33.
    M. G. DOBB, in “Handbook of Composites, Vol. 1, Strong Fibres”, edited by W. Watt and B. V. Perov (Elsevier Science Publishers, Amsterdam, 1985).Google Scholar
  34. 34.
    H. ADE and B. HSIAO, Science 262 (1993) 1427.CrossRefGoogle Scholar
  35. 35.
    L. FRYDMAN, unpublished research (1994).Google Scholar
  36. 36.
    M. J. MARKS, Polymer Preprints 66 (1992) 362.Google Scholar
  37. 37.
    M. J. MARKS, J. S. ERSKINE and D. A. McCRERY, Macromolecules 27 (1994) 4114.CrossRefGoogle Scholar
  38. 38.
    D. F. MIELEWSKI, D. C. MARTIN and D. R. BAUER, Polymer Materials Science and Engineering 71 (1994) 160.Google Scholar
  39. 39.
    S. L. MAYO, B. D. OLAFSON and W. A. GODDARD, J. Phys. Chem. 94 (1990) 8897.CrossRefGoogle Scholar
  40. 40.
    G. E. SPILMAN, T. JIANG, J. S. MOORE and D. C. MARTIN, Polymer Preprints 35(2) (1994) 667.Google Scholar
  41. 41.
    W. C. OLIVER and G. M. PHARR, J. Mater. Res. 7 (1992) 1564.Google Scholar
  42. 42.
    M. K. FERBER, E. LARA-CURZIO, A. A. WERESZCZAK and R. A. LOWDEN, Measurement Sci. Technol. (1997) in press.Google Scholar
  43. 43.
    A. A. WERESZCZAK, M. K. FERBER and R. A. LOWDEN, Ceram. Eng. Sci. Proc. 14 (1993) 156.CrossRefGoogle Scholar
  44. 44.
    P. M. CUNNIFF, private communication (1994).Google Scholar
  45. 45.
    V. R. MEHTA and S. KUMAR, J. Mater. Sci. 29 (1994) 3658.CrossRefGoogle Scholar
  46. 46.
    R. J. SCHADT, E. J. CAIN, K. H. GARDNER, V. GABARA, S. R. ALLEN and A. D. ENGLISH, Macromolecules 26 (1993) 6503.CrossRefGoogle Scholar
  47. 47.
    R. J. SCHADT, K. H. GARDNER, V. GABARA, S. R. ALLEN, D. B. CHASE and A. D. ENGLISH, ibid. 26 (1993) 6509.CrossRefGoogle Scholar
  48. 48.
    M-C. G. JONES and D. C. MARTIN, J. Mater. Sci. (1997) in press.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • M. C. G Jones
    • 1
  • E Lara-Curzio
    • 2
  • A Kopper
    • 2
  • D. C Martin
    • 1
  1. 1.Department of Materials Science and Engineering and the Macromolecular Science and Engineering CenterThe University of MichiganAnn ArborUSA
  2. 2.High Temperature Materials LaboratoryOak RidgeUSA

Personalised recommendations